CMSC 330: Organization of Programming Languages

Lambda Calculus and Types
Lambda Calculus

• A lambda calculus expression is defined as

\[
e ::= x \quad \text{variable} \\
| \lambda x.e \quad \text{function} \\
| e e \quad \text{function application}
\]

• \(\lambda x.e \) is like \(\text{fun } x \rightarrow e \) in OCaml

• That’s it! Only higher-order functions
Beta-Reduction, Again

• Whenever we do a step of beta reduction...
 – $(\lambda x. e_1) e_2 \rightarrow e_1[x/e_2]$
 – ...alpha-convert variables as necessary

• Examples:
 – $(\lambda x. x (\lambda x. x)) z = (\lambda x. x (\lambda y. y)) z \rightarrow z (\lambda y. y)$
 – $(\lambda x. \lambda y. x y) y = (\lambda x. \lambda z. x z) y \rightarrow \lambda z. y z$
Encodings

• It turns out that this language is Turing complete

• That means we can encode any computation we want in it
 – ...if we’re sufficiently clever...
Booleans

\[
\text{true} = \lambda x.\lambda y. x \\
\text{false} = \lambda x.\lambda y. y
\]

if \(a\) then \(b\) else \(c\) is defined to be the \(\lambda\) expression: \(a\ b\ c\)

- **Examples:**
 - if true then \(b\) else \(c\) \(\rightarrow (\lambda x.\lambda y.x)\ b\ c \rightarrow (\lambda y.b)\ c \rightarrow b\)
 - if false then \(b\) else \(c\) \(\rightarrow (\lambda x.\lambda y.y)\ b\ c \rightarrow (\lambda y.y)\ c \rightarrow c\)
Booleans (continued)

Other Boolean operations:

- not = \lambda x.((x \text{ false}) \text{ true})
- not true → \lambda x.((x \text{ false}) \text{ true}) \text{ true} → ((\text{true false}) \text{ true}) → \text{false}
- and = \lambda x.\lambda y.((x \ y) \text{ false})
- or = \lambda x.\lambda y.((x \text{ true}) \ y)

- Given these operations, can build up a logical inference system

- Exercise: Show that not, and and or have the desired properties
Pairs

(a,b) = \lambda x. \text{if } x \text{ then } a \text{ else } b
fst = \lambda f. f \text{ true}
snd = \lambda f. f \text{ false}

• Examples:
 - fst (a,b) = (\lambda f. f \text{ true}) (\lambda x. \text{if } x \text{ then } a \text{ else } b) \rightarrow
 (\lambda x. \text{if } x \text{ then } a \text{ else } b) \text{ true} \rightarrow
 \text{if true then } a \text{ else } b \rightarrow a
 - snd (a,b) = (\lambda f. f \text{ false}) (\lambda x. \text{if } x \text{ then } a \text{ else } b) \rightarrow
 (\lambda x. \text{if } x \text{ then } a \text{ else } b) \text{ false} \rightarrow
 \text{if false then } a \text{ else } b \rightarrow b
Natural Numbers (Church*)

*(Named after Alonzo Church, developer of lambda calculus)

\[0 = \lambda f. \lambda y. y \]
\[1 = \lambda f. \lambda y. f \ y \]
\[2 = \lambda f. \lambda y. f \ (f \ y) \]
\[3 = \lambda f. \lambda y. f \ (f \ (f \ y)) \]

i.e., \[n = \lambda f. \lambda y. \langle \text{apply } f \ n \ \text{times to } y \rangle \]

\[\text{succ} = \lambda z. \lambda f. \lambda y. f \ (z \ f \ y) \]
\[\text{iszero} = \lambda g. g \ (\lambda y. \text{false}) \ \text{true} \]

 - Recall that this is equivalent to \[\lambda g. ((g \ (\lambda y. \text{false})) \ \text{true}) \]
Natural Numbers (cont’d)

• Examples:

\[\text{succ 0} = \]
\[(\lambda z.\lambda f.\lambda y. f (z f y)) (\lambda f.\lambda y. y) \rightarrow \]
\[\lambda f.\lambda y. f ((\lambda f.\lambda y. y) f y) \rightarrow \]
\[\lambda f.\lambda y. f y = 1 \]

\[\text{iszero 0} = \]
\[(\lambda z. z (\lambda y. \text{false}) \text{true}) (\lambda f.\lambda y. y) \rightarrow \]
\[(\lambda f.\lambda y. y) (\lambda y. \text{false}) \text{true} \rightarrow \]
\[(\lambda y. y) \text{true} \rightarrow \]
\[\text{true} \]
Arithmetic defined

- Addition, if M and N are integers (as λ expressions):
 \[M + N = \lambda x.\lambda y.((M x)((N x) y)) \]
 Equivalently: \[+ = \lambda M.\lambda N.\lambda x.\lambda y.((M x)((N x) y)) \]
- Multiplication: \[M * N = \lambda x.(M (N x)) \]
- Prove 1+1 = 2.
 \[1+1 = \lambda x.\lambda y.((1 x)((1 x) y)) \rightarrow \]
 \[\lambda x.\lambda y.(((\lambda x.\lambda y.x y) x)(((\lambda x.\lambda y.x y) x) y)) \rightarrow \]
 \[\lambda x.\lambda y.((\lambda y.x y)(((\lambda x.\lambda y.x y) x) y)) \rightarrow \]
 \[\lambda x.\lambda y.(\lambda y.x y)(((\lambda x.\lambda y.x y) y) y) \rightarrow \]
 \[\lambda x.\lambda y.((\lambda x.\lambda y.x y) y) \rightarrow \]
 \[\lambda x.\lambda y.((\lambda y.x y) y) \rightarrow \]
 \[\lambda x.\lambda y.x ((\lambda y.x y) y) \rightarrow \]
 \[\lambda x.\lambda y.x (x y) = 2 \]
- With these definitions, can build a theory of integer arithmetic.
Looping

• Define \(D = \lambda x. x \ x \)

• Then

 \[D \ D = (\lambda x. x \ x) \ (\lambda x. x \ x) \rightarrow (\lambda x. x \ x) \ (\lambda x. x \ x) = D \ D \]

• So \(D \ D \) is an infinite loop

 – In general, *self application* is how we get looping
The “Paradoxical” Combinator

\[Y = \lambda f. (\lambda x. f (x x)) (\lambda x. f (x x)) \]

• Then

\[Y \, F = \]

\[(\lambda f. (\lambda x. f (x x)) (\lambda x. f (x x))) \, F \to \]

\[(\lambda x. F (x x)) (\lambda x. F (x x)) \to \]

\[F ((\lambda x. F (x x)) (\lambda x. F (x x))) \]

\[= F (Y \, F) \]

• Thus \[Y \, F = F (Y \, F) = F (F (Y \, F)) = \ldots \]
Example

\[
\text{fact} = \lambda f. \lambda n. \text{if } n = 0 \text{ then } 1 \text{ else } n \ast (f (n-1))
\]

- The second argument to fact is the integer
- The first argument is the function to call in the body
 - We’ll use \(Y \) to make this recursively call fact

\[
(Y \text{ fact}) \ 1 = (\text{fact} (Y \text{ fact})) \ 1
\]

\[
\rightarrow \text{if } 1 = 0 \text{ then } 1 \text{ else } 1 \ast ((Y \text{ fact}) \ 0)
\]

\[
\rightarrow 1 \ast ((Y \text{ fact}) \ 0)
\]

\[
\rightarrow 1 \ast (\text{fact} (Y \text{ fact}) \ 0)
\]

\[
\rightarrow 1 \ast (\text{if } 0 = 0 \text{ then } 1 \text{ else } 0 \ast ((Y \text{ fact}) \ (-1)))
\]

\[
\rightarrow 1 \ast 1 \rightarrow 1
\]
Discussion

• Using encodings we can represent pretty much anything we have in a “real” language
 – But programs would be pretty slow if we really implemented things this way
 – In practice, we use richer languages that include built-in primitives

• Lambda calculus shows all the issues with scoping and higher-order functions

• It's useful for understanding how languages work
The Need for Types

- Consider the untyped lambda calculus
 - false = λx.λy.y
 - 0 = λx.λy.y

- Since everything is encoded as a function...
 - We can easily misuse terms
 - false 0 → λy.y
 - if 0 then ...
 - Everything evaluates to some function

- The same thing happens in assembly language
 - Everything is a machine word (a bunch of bits)
 - All operations take machine words to machine words
What is a Type System?

• A *type system* is some mechanism for distinguishing good programs from bad
 – Good = well typed
 – Bad = ill typed or not typable; has a *type error*

• Examples
 – 0 + 1 // well typed
 – false 0 // ill-typed; can’t apply a boolean
Static versus Dynamic Typing

• In a *static type system*, we guarantee at compile time that all program executions will be free of type errors
 – OCaml and C have static type systems

• In a *dynamic type system*, we wait until runtime, and halt a program (or raise an exception) if we detect a type error
 – Ruby has a dynamic type system

• Java, C++ have a combination of the two
Simply-Typed Lambda Calculus

- $e ::= n \mid x \mid \lambda x:t.e \mid e\ e$
 - We’ve added integers n as primitives
 - Without at least two distinct types (integer and function), can’t have any type errors
 - Functions now include the type of their argument

- $t ::= \text{int} \mid t \rightarrow t$
 - int is the type of integers
 - $t_1 \rightarrow t_2$ is the type of a function that takes arguments of type t_1 and returns a result of type t_2
 - t_1 is the domain and t_2 is the range
 - Notice this is a recursive definition, so that we can give types to higher-order functions
Type Judgments

• We will construct a type system that proves judgments of the form

\[A \vdash e : t \]

– “In type environment \(A \), expression \(e \) has type \(t \)”

• If for a program \(e \) we can prove that it has some type, then the program type checks
 – Otherwise the program has a type error, and we’ll reject the program as bad
Type Environments

• A type environment is a map from variables names to their types

• \(A, x:t \) is just like \(A \), except \(x \) now has type \(t \)

• When we see a variable in the program, we’ll look up its type in the environment
Type Rules

\[e ::= n \mid x \mid \lambda x:t.e \mid e \, e \]

\[\frac{}{\frac{\text{TInt}}{A \vdash n : \text{int}}} \]

\[\frac{}{\frac{\text{TVar}}{A \vdash x : t}} \]

\[\frac{A, x : t \vdash e : t'}{\frac{\text{TFun}}{A \vdash \lambda x:t.e : t \rightarrow t'}} \]

\[\frac{A \vdash e : t \rightarrow t' \quad A \vdash e' : t}{\frac{\text{TApp}}{A \vdash e \, e' : t'}} \]
Example

\[A = \{ \text{+ : int} \to \text{int} \to \text{int} \} \]

\[B = A, \ x : \text{int} \]

\[B \vdash \text{+ : i\to i\to i} \quad B \vdash x : \text{int} \]

\[\begin{align*}
B \vdash \text{+ : i\to i\to i} & \quad B \vdash 3 : \text{int} \\
\hline
B \vdash \text{+ : i\to i\to i} & \quad B \vdash 3 : \text{int} \\
\hline
B \vdash \text{+ : i\to i\to i} & \quad B \vdash x : \text{int} \\
\hline
B \vdash \text{+ : i\to i\to i} & \quad B \vdash 3 : \text{int} \\
\hline
B \vdash \text{+ : i\to i\to i} & \quad B \vdash x : \text{int} \\
\hline
A \vdash (\lambda x:\text{int.}+: x 3) : \text{int} \to \text{int} & \quad A \vdash 4 : \text{int} \\
\hline
A \vdash (\lambda x:\text{int.}+: x 3) 4 : \text{int}
\end{align*} \]
Discussion

• The type rules provide a way to reason about programs (i.e. a formal logic)
 – The tree of judgments we just saw is a kind of proof in this logic that the program has a valid type

• So the *type checking* problem is like solving a jigsaw puzzle
 – Can we apply the rules to a program in such a way as to produce a typing proof?
 – We can do this automatically
An Algorithm for Type Checking

(Write this in OCaml!)

TypeCheck : type env × expression → type

TypeCheck(A, n) = int
TypeCheck(A, x) = if x in A then A(x) else fail
TypeCheck(A, λx:t.e) =
 let t' = TypeCheck((A, x:t), e) in t → t'
TypeCheck(A, e1 e2) =
 let t1 = TypeCheck(A, e1) in
 let t2 = TypeCheck(A, e2) in
 if dom(t1) = t2 then range(t1) else fail
Type Inference

• We could extend the rules to allow the type checker to deduce the types of every expression in a program even without the annotations
 – This is called type inference
 – Not covered in this class
Summary

• Lambda calculus shows all the issues with scoping and higher-order functions

• It's useful for understanding how languages work
Practice

• Reduce the following:
 – \((\lambda x.\lambda y.x \ y \ y) \ (\lambda a.a) \ b\)
 – \((\text{or true}) \ (\text{and true false})\)
 – \((\ast \ 1 \ 2)\) \((\ast \ m \ n = \lambda M.\lambda N.\lambda x.(M \ (N \ x))\) \)

• Derive and prove the type of:
 – \(A \vdash (\lambda f:\text{int-}\to\text{int}.\lambda n:\text{int}.f \ n) \ (\lambda x:\text{int}.\ + \ 3 \ x) \ 6\)
 \[
 A = \{ + : \text{int} \to \text{int} \to \text{int} \}
 \]
 – \(\lambda x:\text{int-}\to\text{int-}\to\text{int}. \lambda y:\text{int-}\to\text{int}. \lambda z:\text{int}.x \ z \ (y \ z)\)