Exercise: Write a Ruby function that takes an array of names in “Last, First Middle” format and returns the same list in “First Middle Last” format.

CHALLENGE: Can you do it in a single line?
CMSC 330: Organization of Programming Languages

Theory of Regular Expressions
Switching gears

• That’s it for the basics of Ruby
 – If you need other material for your projects, come to office hours or check out the documentation

• Next up: How do regular expressions work?
 – Mixture of a very practical tool (string matching) and some nice theory
 – Stephen Cole Kleene and Ken Thompson (1950’s)
 – A great computer science result
Thinking about Regular Expressions (REs)

• What does a regular expression represent?
 – Just a (possibly large) set of strings

• What are the basic components of REs?
 – Is there a minimal set of constructs?
 – E.g., we saw that e^+ is the same as ee^*

• How are REs implemented?
 – We’ll see how to build a structure to parse REs

• First, some definitions...
Definition: Alphabet

• An alphabet is a finite set of symbols
 – Usually denoted Σ

• Example alphabets:
 – Binary: $\Sigma = \{0,1\}$
 – Decimal: $\Sigma = \{0,1,2,3,4,5,6,7,8,9\}$
 – Alphanumeric: $\Sigma = \{0-9,a-z,A-Z\}$
 – Greek: $\Sigma = \{\alpha,\beta,\gamma,\delta,\epsilon,\zeta,\eta,\theta,\iota,\kappa,\lambda,\mu,\nu,$
 $\xi,\omicron,\pi,\rho,\sigma,\varsigma,\tau,\upsilon,\phi,\chi,\psi,\omega\}$
Definition: String

- A string is a finite sequence of symbols from Σ
 - ε is the empty string
 - $|s|$ is the length of string s
 - $|\text{Hello}| = 5$, $|\varepsilon| = 0$
 - Note: \emptyset is the empty set (with 0 elements)
 - $\emptyset = \{ \}$
 - $\emptyset \neq \{ \varepsilon \}$
Definition: Concatenation

- **Concatenation** is indicated by juxtaposition
 - If $s_1 = \text{super}$ and $s_2 = \text{hero}$, then $s_1s_2 = \text{superhero}$
 - Sometimes also written $s_1 \cdot s_2$
 - For any string s, we have $se = es = s$
 - You *can* concatenate strings from different alphabets, then the new alphabet is the union of the originals:
 - If $s_1 = \text{super} \in \Sigma_1 = \{s,u,p,e,r\}$ and $s_2 = \text{hero} \in \Sigma_2 = \{h,e,r,o\}$, then $s_1s_2 = \text{superhero} \in \Sigma_3 = \{e,h,o,p,r,s,u\}$
Definition: Language

• A *language* is a set of strings over an alphabet

• Example: The set of all strings over Σ
 – Often written Σ^*

• Example: The set of phone numbers over the alphabet $\Sigma = \{0, 1, 2, 3, 4, 5, 6, 7, 9, (,), -\}$
 – Give an example element of this language $(123) 456-7890$
 – Are all strings over the alphabet in the language? No
 – Is there a Ruby regular expression for this language?

/\((\d{3,3}\))\d{3,3}-\d{4,4}/
Languages (cont’d)

• Example: The set of strings of length 0 over the alphabet \(\Sigma = \{a, b, c\} \)
 \[\{s \mid s \in \Sigma^* \text{ and } |s| = 0\} = \{\varepsilon\} \neq \emptyset \]

• Example: The set of all valid Ruby programs
 – Is there a regular expression for this language?

 No. Matching (an arbitrary number of) brackets so that they are balanced is impossible. \{ {{ { … } } } \}

• Can REs represent all possible languages?
 – The answer turns out to be no!
 – The languages represented by regular expressions are called, appropriately, the regular languages
Operations on Languages

• Let Σ be an alphabet and let L, L_1, L_2 be languages over Σ

• Concatenation L_1L_2 is defined as
 - $L_1L_2 = \{xy \mid x \in L_1 \text{ and } y \in L_2\}$
 - Example: $L_1 = \{\text{“hi”, “bye”}\}, L_2 = \{\text{“1”, “2”}\}$
 • $L_1L_2 = \{\text{“hi1”, “hi2”, “bye1”, “bye2”}\}$

• Union is defined as
 - $L_1 \cup L_2 = \{x \mid x \in L_1 \text{ or } x \in L_2\}$
 - Example: $L_1 = \{\text{“hi”, “bye”}\}, L_2 = \{\text{“1”, “2”}\}$
 • $L_1 \cup L_2 = \{\text{“hi”, “bye”, “1”, “2”}\}$
Operations on Languages (cont’d)

• Define \(L^n \) inductively as
 – \(L^0 = \{ \varepsilon \} \)
 – \(L^n = LL^{n-1} \) for \(n > 0 \)

• In other words,
 – \(L^1 = LL^0 = L\{ \varepsilon \} = L \)
 – \(L^2 = LL^1 = LL \)
 – \(L^3 = LL^2 = LLL \)
 – ...
Examples of L^n

• Let $L = \{a, b, c\}$

• Then

 – $L^0 = \{\varepsilon\}$

 – $L^1 = \{a, b, c\}$

 – $L^2 = \{aa, ab, ac, ba, bb, bc, ca, cb, cc\}$
Operations on Languages (cont’d)

• Kleene Closure: L^*
 – Includes all elements in the languages L^0, L^1, L^2, etc.

• Example: Let $L = \{a\}$
 – Then, $L^* = \{\varepsilon, a, aa, aaa, \ldots\}$
Definition of Regexps

- Given an alphabet Σ, the regular expressions of Σ are defined inductively as:

<table>
<thead>
<tr>
<th>regular expression</th>
<th>denotes language</th>
</tr>
</thead>
<tbody>
<tr>
<td>\emptyset</td>
<td>\emptyset</td>
</tr>
<tr>
<td>ϵ</td>
<td>${\epsilon}$</td>
</tr>
<tr>
<td>each element $\sigma \in \Sigma$</td>
<td>${\sigma}$</td>
</tr>
</tbody>
</table>
Definition of Regexps (cont’d)

• Let A and B be regular expressions denoting languages L_A and L_B, respectively:

<table>
<thead>
<tr>
<th>regular expression</th>
<th>denotes language</th>
</tr>
</thead>
<tbody>
<tr>
<td>AB</td>
<td>$L_A L_B$</td>
</tr>
<tr>
<td>$(A</td>
<td>B)$</td>
</tr>
<tr>
<td>A^*</td>
<td>L_A^*</td>
</tr>
</tbody>
</table>

• There are no other regular expressions over Σ
• We use (\cdot)’s as needed for grouping
Regexp Precedence

• Operation precedence (high to low):
 – Kleene closure: "*
 – Concatenation
 – Union: "|
 – Grouping: "(" and ")"
The Language Denoted by an RE

- For a regular expression e, we will write $[[e]]$ to mean the language denoted by e
 - $[[a]] = \{a\}$
 - $[[a|b]] = \{a, b\}$

- If $s \in [[re]]$, we say that re accepts, describes, or recognizes s.
Regular Languages

• The languages that can be described using regular expressions are the *regular languages* or *regular sets*

• Not all languages are regular
 – Examples (without proof):
 • The set of palindromes over Σ
 – reads the same backward or forward
 • $\{a^n b^n \mid n > 0 \}$ ($a^n =$ sequence of n a’s)

• Almost all programming languages are not regular
 – But aspects of them sometimes are (e.g., identifiers)
 – Regular expressions are commonly used in parsing tools
Ruby Regular Expressions

• Almost all of the features we’ve seen for Ruby REs can be reduced to this formal definition
 – /Ruby/ – concatenation of single-character REs
 – /(Ruby|Regular)/ – union
 – /(Ruby)/* – Kleene closure
 – /(Ruby)+/ – same as (Ruby)(Ruby)*
 – /(Ruby)?/ – same as (ε|Ruby)) (// is ε)
 – /[a-z]/ – same as (a|b|c|...|z)
 – /[^0-9]/ – same as (a|b|c|...) for a,b,c,... ∈ Σ - {0..9}
 – ^, $ – correspond to extra characters in alphabet
Many Types of Regular Expressions

- POSIX Basic
- POSIX Extended
- Perl
- Ruby

- The basic theory is the same, and most constructs can be reduced to combinations of grouping and the three operations:
 1. Concatenation
 2. Union
 3. Closure
Example 1

• All strings over $\Sigma = \{a, b, c\}$ such that all the a’s are first, the b’s are next, and the c’s last
 – Example: $aaabbbccc$ but not $abcb$

• Regexp: $a^*b^*c^*$
 – This is a valid regexp because:
 • a is a regexp ($[[a]] = \{a\}$)
 • a^* is a regexp ($[[a^*]] = \{\varepsilon, a, aa, ...\}$)
 • Similarly for b^* and c^*
 • So $a^*b^*c^*$ is a regular expression

(Remember that we need to check this way because regular expressions are defined inductively.)
Which Strings Does $a^*b^*c^*$ Recognize?

- $aabbcc$

 Yes; $aa \in [[a^*]]$, $bbb \in [[b^*]]$, and $cc \in [[c^*]]$, so entire string is in $[[a^*b^*c^*]]$

- abb

 Yes, $abb = abb\varepsilon$, and $\varepsilon \in [[c^*]]$

- ac

 Yes

- ε

 Yes

- $aacbc$

 No

- $abcd$

 No -- outside the language
Example 2

• All strings over $\Sigma = \{a, b, c\}$
• Regexp: $(a|b|c)^*$
• Other regular expressions for the same language?
 – $(c|b|a)^*$
 – $(a^*|b^*|c^*)^*$
 – $(a^*b^*c^*)^*$
 – $((a|b|c)^*|abc)$
 – etc.
Example 3

• All whole numbers containing the substring 330
• Regular expression: \((0|1|...|9)^*330(0|1|...|9)^*\)
• What if we want to get rid of leading 0’s?
 • \((1|...|9)(0|1|...|9)^*330(0|1|...|9)^* \mid 330(0|1|...|9)^* \)

• Challenge: What about all whole numbers not containing the substring 330?
Example 4

• What language does this regular expression recognize?
 \[-\left((1|\epsilon)(0|1|...|9) | (2(0|1|2|3)) \right) : (0|1|...|5)(0|1|...|9)\]

• All valid times written in 24-hour format
 – 10:17
 – 23:59
 – 0:45
 – 8:30
Two More Examples

• \((000|00|1)^*\)
 – Any string of 0's and 1's with no single 0’s
• \((00|0000)^*\)
 – Strings with an even number of 0’s
 – Notice that some strings can be accepted more than one way
 • \(000000 = 00 \cdot 00 \cdot 00 = 00 \cdot 0000 = 0000 \cdot 00\)
 – How else could we express this language?
 • \((00)^*\)
 • \((00|000000)^*\)
 • \((00|0000|000000)^*\)
 • etc…
Practice

Give the regular expressions for the following languages:

• All valid DNA strings (including only ACGT and appearing in multiples of 3)
• All binary strings containing an even length (2 or greater) substring of all 1’s
• All binary strings containing exactly two 1’s
• All binary strings that start and end with the same number