CMSC 330: Organization of Programming Languages

Finite Automata
NFAs \rightarrow DFAs
Review

• How are DFAs and NFAs different?

• When does an NFA accept a string?

• How do we convert from a regular expression to an NFA?

• What is the ε-closure of a state?
Relating REs to DFAs and NFAs

(we’ll discuss this next)
Reduction Complexity

• Regular expression to NFA reduction:
 – $O(n)$

• NFA to DFA reduction
 – Intuition: Build DFA where each DFA state represents a set of NFA states
 – How many states could there be in the DFA?
 – Given NFA with n states, DFA may have 2^n states
 – This is not so good, but we can implement DFAs more easily
NFA → DFA reduction

Example:
NFA → DFA reduction Algorithm

- Let \(r_0 = \varepsilon\)-closure\((q_0)\), \(R = \{r_0\} \), \(\delta_R = \emptyset \)
- While there is an unmarked state \(r_i \) in \(R \)
 - Mark \(r_i \)
 - For each \(a \in \Sigma \)
 - Let \(S = \{s \mid \{q, a, s\} \in \delta \text{ and } q \in r_i\} \)
 - Let \(E = \varepsilon\)-closure\((S)\)
 - If \(E \not\in R \), then \(R = R \cup E \)
 - \(\delta_R = \delta_R \cup \{r_i, a, E\} \)
- Let \(F_R = \{r_i \mid \exists s \in r_i \text{ with } s \in q_f\} \)

Notes: Let \((\Sigma, Q, q_0, F_Q, \delta)\) be the NFA and \((\Sigma, R, r_0, F_R, \delta_R)\) be the DFA. All new states in \(R \) are unmarked at creation.
NFA → DFA example

\[R = \{ \{A, E\}, \{B, D, E\}, \{C, D\}, \{E\} \} \]

Language?
All strings that have exactly 1 b and end in b or the string a

Regular expression?
a*b|a
Practice

Convert the NFA to a DFA:
Equivalence of DFAs and NFAs

- Any string from A to either D or CD in the DFA represents a path from A to D in the original NFA.
Relating RE's to DFAs and NFAs

• Regular expressions, NFAs, and DFAs accept the same languages!

High-level idea next
Converting from DFAs to REs

- General idea:
 - Remove states one by one, labeling transitions with regular expressions
 - When two states are left (start and final), the transition label is the regular expression for the DFA

![Diagram of DFA and RE conversion](image-url)
Relating REs to DFAs and NFAs

• Why do we want to convert between these?
 – Easier to express ideas (regexes/NFAs)
 – Easier to implement (DFAs)
Implementing DFAs

It's easy to build a program which mimics a DFA

```c
cur_state = 0;
while (1) {
    symbol = getchar();
    switch (cur_state) {
    case 0: switch (symbol) {
              case '0':  cur_state = 0; break;
              case '1':  cur_state = 1; break;
              case '\n': printf("rejected\n"); return 0;
              default:   printf("rejected\n"); return 0;
              }
              break;
    case 1: switch (symbol) {
              case '0':  cur_state = 0; break;
              case '1':  cur_state = 1; break;
              case '\n': printf("accepted\n"); return 1;
              default:   printf("rejected\n"); return 0;
              }
              break;
    default: printf("unknown state; I'm confused\n");
           break;
    }
}
```
Implementing DFAs (Alternative)

Alternatively, use generic table-driven DFA

given components $(\Sigma, Q, q_0, F, \delta)$ of a DFA:
let $q = q_0$
while (there exists another symbol s of the input string)
 $q := \delta(q, s)$;
if $q \in F$ then
 accept
else reject

- q is just an integer
- Represent δ using 2d array or nested hash tables
- Represent F as a set
Run Time of Algorithm

• Given a string s, how long does algorithm take to decide whether s is accepted?
 – Assume we can compute $\delta(q_0, c)$ in constant time
 – Time per string s to determine acceptance is $O(|s|)$
 – Can’t get much faster!

• But recall that constructing the DFA from the regular expression A may take $O(2^{|A|})$ time
 – But this is usually not the case in practice

• So there’s the initial overhead, but then accepting strings is fast
Regular Expressions in Practice

- Regular expressions are typically “compiled” into tables for the generic algorithm
 - Can think of this as a simple byte code interpreter
 - But really just a representation of \((\Sigma, Q_A, q_A, \{f_A\}, \delta_A)\), the components of the DFA produced from the RE
Complement of DFA

Given a DFA accepting language L, how can we create a DFA accepting its complement?

(the alphabet = \{a,b\})
Complement Steps

- Add implicit transitions to a dead state
- Change every accepting state to a non-accepting state and every non-accepting state to an accepting state
- Note: this *only* works with DFAs - Why?
Make the DFA which accepts the complement of the language accepted by the DFA below.
Review and Practice
Deterministic Finite Automaton (DFA)

• A DFA is a 5-tuple \((\Sigma, Q, q_0, F, \delta)\) where
 – \(\Sigma\) is an alphabet
 – \(Q\) is a nonempty set of states
 – \(q_0 \in Q\) is the start state
 – \(F \subseteq Q\) is the set of final states
 – \(\delta : Q \times \Sigma \rightarrow Q\) specifies the DFA's transitions
Nondeterministic Finite Automaton (NFA)

- A NFA is a 5-tuple \((\Sigma, Q, q_0, F, \delta)\) where
 - \(\Sigma\) is an alphabet
 - \(Q\) is a nonempty set of states
 - \(q_0 \in Q\) is the start state
 - \(F \subseteq Q\) is the set of final states
 - \(\delta : Q \times (\Sigma \cup \{\varepsilon\}) \rightarrow Q\) specifies the NFA's transitions
Practice

Give the English descriptions and the DFA or regular expression of the following languages:

• \(((0|1)(0|1)(0|1))\)^*

• \((01)^*(10)^*(01)^*0|(10)^*1\)
Practice

Give the DFAs for the following languages:

• All valid strings including only “A”, “C”, “G”, “T” and appearing in multiples of 3
• All binary strings containing an even, non-zero length substring of all 1’s
• All binary strings containing exactly two 1’s
• All binary strings that start and end with the same number
Practice

- Make the DFA which accepts all strings with a substring of 330
- Take the complement of this DFA
Practice

Draw NFAs for the following regular expressions and languages:

• \((0|1)^*110^*\)
• \(101^*|111\)
• all binary strings ending in 1 (odd numbers)
• \((ab^*c|d^*a|ab)d\)
Example

- Find the ϵ-closure for each of the states in this NFA:
Practice

Convert to a DFA:

Convert to an NFA and then to a DFA:

• \((0|1)*11|0*\)
• \(aba^*|(ba|b)\)