CMSC 330: Organization of Programming Languages

Context-Free Grammars
Ambiguity
Review

• Why should we study CFGs?

• What are the four parts of a CFG?

• How do we tell if a string is accepted by a CFG?

• What’s a parse tree?
Review

A *sentential form* is a string of terminals and non-terminals produced from the start symbol

Inductively:

- The start symbol
- If $\alpha A \delta$ is a sentential form for a grammar, where $(\alpha$ and $\delta \in (V|\Sigma)^*)$, and $A \rightarrow \gamma$ is a production, then $\alpha \gamma \delta$ is a sentential form for the grammar
 - In this case, we say that $\alpha A \delta$ *derives* $\alpha \gamma \delta$ in one step, which is written as $\alpha A \delta \Rightarrow \alpha \gamma \delta$
Leftmost and Rightmost Derivation

- Example: $S \rightarrow a \mid SbS$

String: aba

Leftmost Derivation

$S \Rightarrow SbS \Rightarrow abS \Rightarrow aba$

At every step, apply production to leftmost non-terminal

Rightmost Derivation

$S \Rightarrow SbS \Rightarrow Sba \Rightarrow aba$

At every step, apply production to rightmost non-terminal

- Both derivations happen to have the same parse tree
- A parse tree has a unique leftmost and a unique rightmost derivation
- Not every string has a unique parse tree
- Parse trees don’t show the order productions are applied
More on Leftmost/Rightmost Derivations

• Is the following derivation leftmost or rightmost?
 \[S \Rightarrow aS \Rightarrow aT \Rightarrow aU \Rightarrow acU \Rightarrow ac \]
 – There’s at most one non-terminal in each sentential form, so there's no choice between left or right non-terminals to expand

• How about the following derivation?
 – \[S \Rightarrow SbS \Rightarrow SbSbS \Rightarrow SbabS \Rightarrow ababS \Rightarrow ababa \]
Multiple Leftmost Derivations

S → a | SbS

• Can we find more than one leftmost derivation?

A leftmost derivation

\[S \Rightarrow SbS \Rightarrow abS \Rightarrow \]
\[\text{abSbS} \Rightarrow \text{ababS} \Rightarrow \text{ababa} \]

Another leftmost derivation

\[S \Rightarrow SbS \Rightarrow SbSbS \Rightarrow \]
\[\text{abSbS} \Rightarrow \text{ababS} \Rightarrow \text{ababa} \]
Ambiguity

• A string is *ambiguous* for a grammar if it has more than one parse tree
 – Equivalent to more than one leftmost (or more than one rightmost) derivation

• A grammar is *ambiguous* if it generates an ambiguous string
 – It can be hard to see this with manual inspection

• Exercise: can you create an unambiguous grammar for \(S \rightarrow a \mid SbS \)?
Are these Grammars Ambiguous?

(1)\[S \rightarrow aS \mid T \]
 \[T \rightarrow bT \mid U \]
 \[U \rightarrow cU \mid \epsilon \]

(2)\[S \rightarrow T \mid T \]
 \[T \rightarrow Tx \mid Tx \mid x \mid x \]

(3)\[S \rightarrow SS \mid (\) \mid (S) \]
Ambiguity of Grammar (Example 3)

- 2 different parse trees for the same string: ()()()
- 2 distinct leftmost derivations:
 S ⇒ SS ⇒ SSS ⇒ ()SS ⇒ ()()S ⇒ ()()()
 S ⇒ SS ⇒ ()S ⇒ ()SS ⇒ ()()S ⇒ ()()()

We need unambiguous grammars to manage programming language semantics
Tips for Designing Grammars

• Closures: use recursive productions to generate an arbitrary number of symbols

 \[A \rightarrow xA \mid \varepsilon \quad \text{Zero or more } x's \]

 \[A \rightarrow yA \mid y \quad \text{One or more } y's \]
Tips for Designing Grammars

- Concatenation: use separate non-terminals to generate disjoint parts of a language, and then combine in a production

\[G = S \rightarrow AB \]
\[A \rightarrow aA | \varepsilon \]
\[B \rightarrow bB | \varepsilon \]

\[L(G) = a^*b^* \]
Tips for Designing Grammars (cont’d)

• Matching constructs: write productions which generate strings from the middle

\{a^n b^n | n \geq 0\} \text{ (not a regular language!)}

S \rightarrow aSb | \varepsilon

Example: S \Rightarrow aSb \Rightarrow aaSbb \Rightarrow aabb

\{a^n b^{2n} | n \geq 0\}

S \rightarrow aSbb | \varepsilon
Tips for Designing Grammars (cont’d)

\{a^n b^m \mid m \geq 2n, n \geq 0\}

\begin{align*}
S & \rightarrow aSbb \mid B \mid \varepsilon \\
B & \rightarrow bB \mid b
\end{align*}

The following grammar also works:

\begin{align*}
S & \rightarrow aSbb \mid B \\
B & \rightarrow bB \mid \varepsilon
\end{align*}

How about the following?

\begin{align*}
S & \rightarrow aSbb \mid bS \mid \varepsilon
\end{align*}
Tips for Designing Grammars (cont’d)

\{a^n b^m a^{n+m} \mid n \geq 0, m \geq 0\}

Rewrite as $a^n b^m a^n$, which now has matching superscripts (two pairs)

Would this grammar work?

$S \rightarrow aSa \mid B$
$B \rightarrow bBa \mid ba$

Doesn’t allow $m = 0$

Corrected:

$S \rightarrow aSa \mid B$
$B \rightarrow bBa \mid \varepsilon$

The outer $a^n a^n$ are generated first, then the inner $b^m a^m$
Tips for Designing Grammars (cont’d)

• Union: use separate nonterminals for each part of the union and then combine

\[\{ a^n(b^m|c^m) \mid m > n \geq 0 \} \]

Can be rewritten as

\[\{ a^n b^m \mid m > n \geq 0 \} \cup \{ a^n c^m \mid m > n \geq 0 \} \]
Tips for Designing Grammars (cont’d)

\{ a^m b^n | m > n \geq 0 \} \cup \{ a^n c^m | m > n \geq 0 \}

S \rightarrow T \mid U

T \rightarrow aTb \mid Tb \mid b \quad T \text{ generates the first set}

U \rightarrow aUc \mid Uc \mid c \quad U \text{ generates the second set}

• What’s the parse tree for string \text{abbb}?
 • Ambiguous!
Tips for Designing Grammars (cont’d)

\{ a^n b^m \mid m > n \geq 0 \} \cup \{ a^n c^m \mid m > n \geq 0 \}

Will this fix the ambiguity?

\[
S \rightarrow T \mid U \\
T \rightarrow aTb \mid bT \mid b \\
U \rightarrow aUc \mid cU \mid c
\]

• It's not ambiguous, but it can generate invalid strings such as babb
Tips for Designing Grammars (cont’d)

\{ a^n b^m \mid m > n \geq 0 \} \cup \{ a^n c^m \mid m > n \geq 0 \}

Unambiguous version

S \rightarrow T \mid V
T \rightarrow aTb \mid U
U \rightarrow Ub \mid b
V \rightarrow aVc \mid W
W \rightarrow Wc \mid c
CFGs for Languages

• Recall that our goal is to describe programming languages with CFGs

• We had the following example which describes limited arithmetic expressions
 \[E \rightarrow a \mid b \mid c \mid E+E \mid E-E \mid E*E \mid (E) \]

• What’s wrong with using this grammar?
 – It’s ambiguous!
Example: $a-b-c$

$E \Rightarrow E-E \Rightarrow a-E \Rightarrow a-E-E \Rightarrow a-b-E \Rightarrow a-b-c$

Corresponds to $a-(b-c)$

$E \Rightarrow E-E \Rightarrow E-E-E \Rightarrow a-E-E \Rightarrow a-b-E \Rightarrow a-b-c$

Corresponds to $(a-b)-c$
The Issue: Associativity

• Ambiguity is bad here because if the compiler needs to generate code for this expression, it doesn’t know what the programmer intended

• So what do we mean when we write \(a-b-c \)?
 – In mathematics, this only has one possible meaning
 – It’s \((a-b)-c\), since subtraction is left-associative
 – \(a-(b-c)\) would be the meaning if subtraction was right-associative
Another Example: If-Then-Else

<stmt> ::= <assignment> | <if-stmt> | ...
<if-stmt> ::= if (<expr>) <stmt> |
 if (<expr>) <stmt> else <stmt>
 – (Here <>’s are used to denote nonterminals and ::= for productions)

- Consider the following program fragment:
 if (x > y)
 if (x < z)
 a = 1;
 else a = 2;
 – Note: Ignore newlines
• **Else** belongs to inner **if**
• Else belongs to outer if
Fixing the Expression Grammar

• Idea: Require that the right operand of all of the operators is not a bare expression

\[E \rightarrow E+T \mid E-T \mid E*T \mid T \]
\[T \rightarrow a \mid b \mid c \mid (E) \]

• Now there's only one parse tree for \(a-b-c \)

– Exercise: Give a derivation for the string \(a-(b-c) \)
What if We Wanted Right-Associativity?

• Left-recursive productions are used for left-associative operators
• Right-recursive productions are used for right-associative operators
• Left:
 \[E \rightarrow E+T \mid E-T \mid E*T \mid T \]
 \[T \rightarrow a \mid b \mid c \mid (E) \]
• Right:
 \[E \rightarrow T+E \mid T-E \mid T*E \mid T \]
 \[T \rightarrow a \mid b \mid c \mid (E) \]
Parse Tree Shape

- The kind of recursion/associativity determines the shape of the parse tree

left recursion

right recursion

- Exercise: draw a parse tree for $a - b - c$ in the prior grammar in which subtraction is right-associative
A Different Problem

• How about the string $a+b*c$?
 $$E \to E+T \mid E-T \mid E*T \mid T$$
 $$T \to a \mid b \mid c \mid (E)$$

• Doesn’t have correct precedence for $*$
 – When a nonterminal has productions for several operators, they effectively have the same precedence

• How can we fix this?
Final Expression Grammar

\[
E \rightarrow E + T \mid E - T \mid T \\
T \rightarrow T * P \mid P \\
P \rightarrow a \mid b \mid c \mid (E)
\]

- Each non-terminal represents a level of precedence
- At each level, operations are left-associative

lowest precedence operators
higher precedence
highest precedence (parentheses)
Final Expression Grammar

\[
E \rightarrow E+T \mid E-T \mid T \\
T \rightarrow T*P \mid P \\
P \rightarrow a \mid b \mid c \mid (E)
\]

• Exercises:
 - Construct tree and left and and right derivations for
 \[
 a+b*c \quad a*(b+c) \quad a*b+c \quad a-b-c
 \]
 - See what happens if you change the first set of productions to
 \[
 E \rightarrow E +T \mid E-T \mid T \mid P
 \]
 - See what happens if you change the last set of productions to
 \[
 P \rightarrow a \mid b \mid c \mid E \mid (E)
 \]