CMSC 330: Organization of Programming Languages

Type Systems
Implementation Topics
Review: Lambda Calculus

- A lambda calculus expression is defined as

\[e ::= x \quad \text{variable} \]
\[| \quad \lambda x.e \quad \text{function} \]
\[| \quad e \; e \quad \text{function application} \]

- \(\lambda x.e \) is like \((\text{fun } x \to e)\) in OCaml
Review: Beta-Reduction

• Whenever we do a step of beta reduction...
 – \((\lambda x. e_1) \ e_2 \rightarrow e_1[x/e_2]\)
 – ...alpha-convert variables as necessary

• Examples:
 – \((\lambda x. (\lambda x.x)) \ z = (\lambda x. (\lambda y.y)) \ z \rightarrow z \ (\lambda y.y)\)
 – \((\lambda x. \lambda y. x \ y) \ y = (\lambda x. \lambda z. x \ z) \ y \rightarrow \lambda z. y \ z\)
The Need for Types

• Consider untyped lambda calculus
 – false = λx.λy.y
 – 0 = λx.λy.y

• Since everything is encoded as a function...
 – We can easily misuse terms
 • false 0 → λy.y
 • if 0 then ...
 • Everything evaluates to some function

• The same thing happens in assembly language
 – Everything is a machine word (a bunch of bits)
 – All operations take machine words to machine words
What is a Type System?

• A type system is some mechanism for distinguishing good programs from bad
 – Good = well typed
 – Bad = ill typed or not typable; has a type error

• Examples
 – 0 + 1 // well typed
 – false 0 // ill-typed; can’t apply a boolean
Static versus Dynamic Typing

• In a static type system, we guarantee at compile time that all program executions will be free of type errors
 – OCaml and C have static type systems

• In a dynamic type system, we wait until runtime, and halt a program (or raise an exception) if we detect a type error
 – Ruby has a dynamic type system
Simply-Typed Lambda Calculus

• $e ::= n \mid x \mid \lambda x : t . e \mid e \; e$
 – We’ve added integers n as primitives
 • Without at least two distinct types (integer and function),
 can’t have any type errors
 – Functions now include the type of their argument

• $t ::= \text{int} \mid t \rightarrow t$
 – int is the type of integers
 – $t_1 \rightarrow t_2$ is the type of a function that takes arguments
 of type t_1 and returns a result of type t_2
 – t_1 is the domain and t_2 is the range
 – Notice this is a recursive definition, so that we can
 give types to higher-order functions
Type Judgments

• We will construct a type system that proves judgments of the form

\[A \vdash e : t \]

– “In type environment \(A \), expression \(e \) has type \(t \)”

• If for a program \(e \) we can prove that it has some type, then the program type checks
 – Otherwise the program has a type error, and we’ll reject the program as bad
Type Environments

• A type environment is a map from variables names to their types

• \emptyset is the empty type environment

• $A, x:t$ is just like A, except x now has type t

• When we see a variable in the program, we’ll look up its type in the environment
Type Rules

\[e ::= n \mid x \mid \lambda x : t . e \mid e \; e \]

<table>
<thead>
<tr>
<th>Rule</th>
<th>Premise</th>
<th>Conclusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>TInt</td>
<td>(A \vdash n : \text{int})</td>
<td></td>
</tr>
<tr>
<td>TVar</td>
<td>(x : t \in A)</td>
<td>(A \vdash x : t)</td>
</tr>
<tr>
<td>TFun</td>
<td>(A, x : t \vdash e : t')</td>
<td>(A \vdash \lambda x : t . e : t \rightarrow t')</td>
</tr>
<tr>
<td>TApp</td>
<td>(A \vdash e : t \rightarrow t') (A \vdash e' : t)</td>
<td>(A \vdash e ; e' : t')</td>
</tr>
</tbody>
</table>
Example

\[A = \{ + : \text{int} \to \text{int} \to \text{int} \} \]

\[B = A, x : \text{int} \]

\[
\begin{align*}
B \vdash + : \text{i} \to \text{i} \to \text{i} & \quad B \vdash x : \text{int} \\
B \vdash + x : \text{int} \to \text{int} & \quad B \vdash 3 : \text{int} \\
B \vdash + x 3 : \text{int} & \quad A \vdash (\lambda x : \text{int}. + x 3) : \text{int} \to \text{int} \\
& \quad A \vdash 4 : \text{int} \\
A \vdash (\lambda x : \text{int}. + x 3) 4 : \text{int}
\end{align*}
\]
The type rules provide a way to reason about programs (i.e., a formal logic)

- The tree of judgments we just saw is a kind of proof in this logic that the program has a valid type

So the *type checking* problem is like solving a jigsaw puzzle

- Can we apply the rules to a program in such a way as to produce a typing proof?
- We can do this automatically
An Algorithm for Type Checking

(Write this in OCaml!)

TypeCheck : type env × expression → type

TypeCheck(A, n) = int
TypeCheck(A, x) = if x in A then A(x) else fail
TypeCheck(A, λx:t.e) =
 let t' = TypeCheck((A, x:t), e) in t → t'
TypeCheck(A, e1 e2) =
 let t1 = TypeCheck(A, e1) in
 let t2 = TypeCheck(A, e2) in
 if dom(t1) = t2 then range(t1) else fail
Type Inference

• We could extend the rules to allow the type checker to deduce the types of every expression in a program even without the annotations
 – This is called *type inference*
 – *Not covered in this class*
Practice

• Reduce the following:
 – \((\lambda x.\lambda y. x \ y \ y) \ (\lambda a. a) \ b\)
 – (or true) (and true false)
 – \((\ast \ 1 \ 2)\) \(\ast \ m \ n = \lambda M.\lambda N.\lambda x.(M \ (N \ x))\)

• Derive and prove the type of:
 – \(A \vdash (\lambda f: \text{int}->\text{int}.\lambda n: \text{int}. f \ n) \ (\lambda x: \text{int}. + 3 \ x) \ 6\)
 \[
 A = \{ + : \text{int} \rightarrow \text{int} \rightarrow \text{int} \}
 \]
 – \(\lambda x: \text{int}->\text{int}->\text{int}. \lambda y: \text{int}->\text{int}. \lambda z: \text{int}. x \ z \ (y \ z)\)
Review of CMSC 330

• Syntax
 – Regular expressions
 – Finite automata
 – Context-free grammars

• Semantics
 – Operational semantics
 – Lambda calculus

• Implementation
 – Names and scope
 – Evaluation order
 – Concurrency
 – Generics
 – Exceptions
 – Garbage collection
Implementation: Names and Scope
Names and Binding

• Programs use names to refer to things
 – E.g., in \(x = x + 1 \), \(x \) refers to a variable

• A binding is an association between a name and what it refers to to
 – int \(x \); /* \(x \) is bound to a stack location containing an int */
 – int \(f \) (int) { ... } /* \(f \) is bound to a function */
 – class \(C \) { ... } /* \(C \) is bound to a class */
 – let \(x = e_1 \) in \(e_2 \) /* \(x \) is bound to \(e_1 \) */
Name Restrictions

• Languages often have various restrictions on names to make lexing and parsing easier
 – Names cannot be the same as keywords in the language
 – Sometimes case is restricted
 – Names generally cannot include special characters like ; , : etc
 • Usually names are upper- and lowercase letters, digits, and _ (where the first character can’t be a digit)
Names and Scopes

• Good names are a precious commodity
 – They help document your code
 – They make it easy to remember what names correspond to what entities

• We want to be able to reuse names in different, non-overlapping regions of the code
Names and Scopes (cont’d)

• A *scope* is the region of a program where a binding is active
 – The same name in a different scope can have a different binding

• A name is *in scope* if it's bound to something within the particular scope we’re referring to

• Two names bound to the same object are *aliases*
Example

void w(int i) {
 ...
}
void x(float j) {
 ...
}
void y(float i) {
 ...
}
void z(void) {
 int j;
 char *i;
 ...
}

• i is in scope
 – in the body of w, the body of y, and after the declaration of j in z
 – but all those i’s are different

• j is in scope
 – in the body of x and z
Ordering of Bindings

- Languages make various choices for when declarations of things are in scope
- Generally, all declarations are in scope from the declaration onward
- What about function calls?

```c
int x = 0;
int f() { return x; }
int g() { int x = 1; return f(); }
```

- What is the result of calling `g()`?
Static Scope

• In static scoping, a name refers to its closest binding, going from inner to outer scope in the program text
 – Languages like C, C++, Java, Ruby, and OCaml are statically scoped

```plaintext
int i;
{
    int j;
    {
        float i;
        j = (int) i;
    }
}
```
Dynamic Scope

- In a language with *dynamic scoping*, a name refers to its closest binding *at runtime*.
Ordering of Bindings

• Back to the example:

```c
int x = 0;
int f() { return x; }
int g() { int x = 1; return f(); }
```

• What is the result of calling `g()` . . .
 – ... with static scoping?
 – ... with dynamic scoping?
Static vs. Dynamic Scope

Static scoping
- Local understanding of function behavior
- Know at compile-time what each name refers to
- A bit trickier to implement

Dynamic scoping
- Can be hard to understand behavior of functions
- Requires finding name bindings at runtime
- Easier to implement (just keep a global table of stacks of variable/value bindings)
Namespaces

• Languages have a “top-level” or outermost scope
 – Many things go in this scope; hard to control collisions

• Common solution: add a hierarchy
 – OCaml: Modules
 • List.hd, String.length, etc.
 • open to add names into current scope
 – Java: Packages
 • java.lang.String, java.awt.Point, etc.
 • import to add names into current scope
 – C++: Namespaces
 • namespace f { class g { ... } }, f::g b, etc.
 • using namespace to add names to current scope
Free and Bound Variables

- The *bound variables* of a scope are those names that are declared in it.
- If a variable is not bound in a scope, it is *free*
 - The bindings of variables which are free in a scope are "inherited" from declarations of those variables in outer scopes in static scoping.

```c
{ /* 1 */
  int j;
  { /* 2 */
    float i;
    j = (int) i;
  }
}
```

- `j` is bound in scope 1.
- `j` is free in scope 2.
- `i` is bound in scope 2.
Implementation: Evaluation Order
Call-by-Value (CBV)

• In *call-by-value* (*eager evaluation*), arguments to functions are fully evaluated before the function is invoked
 – This is the standard evaluation order that we're used to from C, C++, and Java
 – Also in OCaml, in `let x = e1 in e2`, the expression `e1` is fully evaluated before `e2` is evaluated
Call-by-Value in Imperative Languages

- In C, C++, and Java, call-by-value has another feature
 - What does this program print?

```c
void f(int x) {
    x = 3;
}

int main() {
    int x = 0;
    f(x);
    printf("%d\n", x);
}
```

- Prints 0
Call-by-Value in Imperative Languages, con't.

- Actual parameter is copied to stack location of formal parameter

```c
void f(int x) {
    x = 3;
}
int main() {
    int x = 0;
    f(x);
    printf("%d\n", x);
}
```

- Modification of formal parameter not reflected in actual parameter!
Call-by-Reference (CBR)

- Alternative idea: Implicitly pass a *pointer* or *reference* to the actual parameter
 - If the function writes to it the actual parameter is modified

```c
void f(int x) {
    x = 3;
}

int main() {
    int x = 0;
    f(x);
    printf("%d\n", x);
}
```
Call-by-Reference (cont’d)

• Advantages
 – The entire argument doesn't have to be copied to the called function
 • It's more efficient if you’re passing a large (multi-word) argument
 – Allows easy multiple return values

• Disadvantages
 – Can you pass a non-variable (e.g., constant, function result) by reference?
 – It may be hard to tell if a function modifies an argument
 – What if you have aliasing?
Aliasing

• We say that two names are aliased if they refer to the same object in memory
 – C examples (this is what makes optimizing C hard)

```c
int x;
int *p, *q; /*Note that C uses pointers to simulate call by reference */
p = &x; /* *p and x are aliased */
q = p; /* *q, *p, and x are aliased */
```

```c
struct list { int x; struct list *next; }  
struct list *p, *q;
...
q = p; /* *q and *p are aliased */
/* so are p->x and q->x */
/* and p->next->x and q->next->x... */
```
Call-by-Name (CBN)

• *Call-by-name* (lazy evaluation)
 – *Theory simple*: In a function:

    ```
    Let add x y = x+y
    add (a*b) (c*d)
    ```

 Then each use of *x* and *y* in the function definition is just a literal substitution of the actual arguments, *(a*b)* and *(c*d)*, respectively

 – *Implementation difficult*: Highly complex, inefficient, and provides little improvement over other mechanisms, as later slides demonstrate
Call-by-Name (cont’d)

- In *call-by-name*, arguments to functions are evaluated at the last possible moment, just before they're needed.

\[
\text{let add } x \ y = x + y \\
\text{let } z = \text{add } (\text{add} \ 3 \ 1) \ (\text{add} \ 4 \ 1)
\]

OCaml; cbv; arguments evaluated here

\[
\text{add } x \ y = x + y \\
\text{z = add } (\text{add} \ 3 \ 1) \ (\text{add} \ 4 \ 1)
\]

Haskell; cbn; arguments evaluated here
Call-by-Name (cont’d)

• What would be an example where this difference matters?

```ocaml
let cond p x y = if p then x else y
let rec loop n = loop n
let z = cond true 42 (loop 0)
```

OCaml; eager; infinite recursion at call

```ocaml
cond p x y = if p then x else y
loop n = loop n
z = cond True 42 (loop 0)
```

Haskell; lazy; never evaluated because parameter is never used
Three-Way Comparison

• Consider the following program under the three calling conventions
 – For each, determine i's value and which a[i] (if any) is modified

```c
int i = 1;

void p(int f, int g) {
    g++;
    f = 5 * i;
}

int main() {
    int a[] = {0, 1, 2};
p(a[i], i);
    printf("%d %d %d %d\n", i, a[0], a[1], a[2]);
}
```
Example: Call-by-Value

```c
int i = 1;

void p(int f, int g) {
    g++;
    f = 5 * i;
}

int main() {
    int a[] = {0, 1, 2};
    p(a[i], i);
    printf("%d %d %d %d
", i, a[0], a[1], a[2]);
}
```

<table>
<thead>
<tr>
<th>i</th>
<th>a[0]</th>
<th>a[1]</th>
<th>a[2]</th>
<th>f</th>
<th>g</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td>5</td>
<td>2</td>
</tr>
</tbody>
</table>
Example: Call-by-Reference

```c
int i = 1;

void p(int f, int g) {
    g++;
    f = 5 * i;
}

int main() {
    int a[] = {0, 1, 2};
    p(a[i], i);
    printf("%d %d %d %d\n", i, a[0], a[1], a[2]);
}
```

```
1 0 1 2
2 10
2 10
```

Example: Call-by-Name

```c
int i = 1;

void p(int f, int g) {
    g++;
    f = 5 * i;
    a[i] = 5*i;
}

int main() {
    int a[] = {0, 1, 2};
    p(a[i], i);
    printf("%d %d %d %d
", i, a[0], a[1], a[2]);
}
```

<table>
<thead>
<tr>
<th>i</th>
<th>a[0]</th>
<th>a[1]</th>
<th>a[2]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>10</td>
<td>10</td>
<td></td>
</tr>
</tbody>
</table>

The expression `a[i]` isn't evaluated until needed, in this case after `i` has changed.
Evaluation Order in Lambda Calculus

\((\lambda x. x) \ ((\lambda y. y \ y) \ z)\)
Evaluation Order in Lambda Calculus

\[(\lambda x. x) ((\lambda y. y \ y) \ z)\]
\[\quad (\lambda x. x) (z \ z)\]
\[\quad z \ z\]

Eager

\[(\lambda x. x) ((\lambda y. y \ y) \ z)\]
\[\quad (\lambda y. y \ y) \ z\]
\[\quad z \ z \ z\]

Lazy
CBV versus CBN

• CBN is flexible- strictly more programs terminate
 – E.g., where we might have an infinite loop with cbv, we might avoid it with cbn by waiting to evaluate

• Order of evaluation is really hard to see in CBN
 – Call-by-name doesn't mix well with side effects (assignments, print statements, etc.)

• Call-by-name is more expensive since:
 – Functions have to be passed around
 – If you use a parameter twice in a function body, its thunk (the unevaluated argument) will be called twice
 • Haskell actually uses call-by-need (each formal parameter is evaluated only once, where it's first used in a function)
Review

• Evaluation strategies
 – Names and bindings
 • Free vs. bound
 – Scope
 • Static vs. dynamic
 – Reduction order
 • Eager evaluation
 • Lazy evaluation
 – Parameter passing
 • Call-by-value
 • Call-by-reference
 • Call-by-name
 • and others...

(calling convention)
Implementation: Function Calls
How Function Calls Really Work

• Function calls are so important they usually have direct instruction support on the hardware

• We won’t go into the details of assembly language programming
 – See CMSC 212, 311, 412, or 430

• But we will discuss just enough to know how functions are called
Machine Model (x86)

• The CPU has a fixed number of registers
 – Think of these as memory that’s really fast to access
 – For a 32-bit machine, each can hold a 32-bit word

• Important x86 registers
 – eax generic register for computing values
 – esp pointer to the top of the stack
 – ebp pointer to start of current stack frame
 – eip the program counter (points to next instruction in text segment to execute)
The x86 Stack Frame/Activation Record

- The stack just after \(f \) transfers control to \(g \)

Based on Fig 6-1 in Intel ia-32 manual
x86 Calling Convention

• To call a function
 – Push parameters for function onto stack
 – Invoke CALL instruction to
 • Push current value of eip onto stack
 – I.e., save the program counter
 • Start executing code for called function
 – Callee pushes ebp onto stack to save it

• When a function returns
 – Put return value in eax
 – Invoke LEAVE to pop stack frame
 • Set esp to ebp
 • Restore ebp that was saved on stack and pop it off the stack
 – Invoke RET instruction to load return address into eip
 • I.e., start executing code where we left off at call
Example

```c
int f(int a, int b) {
    return a + b;
}

int main(void) {
    int x;
    x = f(3, 4);
}
```

gcc -S a.c

```assembly
f:
    pushl  %ebp
    movl  %esp, %ebp
    movl  12(%ebp), %eax
    addl  8(%ebp), %eax
    leave
    ret

main:
    ...
    subl  $8, %esp
    pushl $4
    pushl $3
    call  f
l:
    addl  $16, %esp
    movl  %eax, -4(%ebp)
    leave
    ret
```
Lots More Details

• There’s a whole lot more to say about calling functions
 – Local variables are allocated on stack by the callee as needed
 • This is usually the first thing a called function does
 – Saving registers
 • If the callee is going to use eax itself, you’d better save it to the stack before you call
 – Passing parameters in registers
 • More efficient than pushing/popping from the stack
 – Etc...

• See other courses for more details
Tail Calls

• A *tail call* is a function call that is the last thing a function does before it returns.

```ocaml
let add x y = x + y
let f z = add z z (* tail call *)

let rec length = function
    [] -> 0
| (_::t) -> 1 + (length t) (* not a tail call *)

let rec length a = function
    [] -> a
| (_::t) -> length (a + 1) t (* tail call *)
```
Tail Recursion

• Recall that in OCaml, all looping is via recursion
 – Seems very inefficient
 – Needs one stack frame for recursive call

• A function is *tail recursive* if it is recursive and the recursive call is a tail call
Tail Recursion (cont’d)

However, if the program is tail recursive...
 – Can instead reuse stack frame for each recursive call

```c
let rec length l = match l with
  | [] -> 0
  | (_::t) -> 1 + (length t)
length [1;2]
```

eax: 2
Tail Recursion (cont’d)

- The same stack frame is reused for the next call, since we’d just pop it off and return anyway

```ocaml
let rec length a l = match l with
  | [] -> a
  | (_::t) -> (length (a + 1) t)
length 0 [1; 2]
```

 eax: 2
Tail Recursion (cont'd)

- Corollary: any tail-recursive function can be rewritten using an iterative loop.

```c
int fact2 (int n, int a) {
    if (n<=1)
        return a;
    else
        return fact(n-1, a*n);
}

int fact (int n) {
    int v = 1;
    while (int n >= 1)
        v *= n--;
    return v;
}
```

```c
int fact (int n) {
    int v = 1;
    while (int n >= 1)
        v *= n--;
    return v;
}
```