
Decoupling Port and Protocol

on the Internet

Kyle King, Michael Lam, Aaron Schulman
{kking,lam,schulman}@cs.umd.edu

December 14, 2007

Abstract

Well-known ports are the current convention for
protocol-to-port association in transport layers to-
day. This convention complicates service discovery
and limits development by requiring registration of
new protocols with a centralized authority. Ulti-
mately, developers have subverted this convention by
layering traffic over HTTP.

We propose a wrapper for the socket API that
provides a string-based application naming scheme,
and removes the need for network applications to be
aware of port number. This will increase separation
between the transport and application layer, alleviat-
ing the previously mentioned difficulties while open-
ing up new areas of stakeholder interaction on the
Internet.

1 Introduction

The Internet relies on the coupling of networked ap-
plication and transport protocol port in order to mul-
tiplex traffic above the network layer. The origi-
nal transport control RFC specified that connections
would be identified by a socket, which is a tuple com-
posed of host ID, TCP identifier, and “port identi-
fier” [1]. The authors originally used numbers as port
identifiers because it was a simple solution and was
sufficient for the small number of applications at the
time [13]. This concept of well-known ports (WKPs)
survives in the current Internet. However, develop-
ment of new Internet applications has proved to be

more dynamic than the authors of TCP envisioned.
Firewalls and NATs identify, block, and forward

traffic based on the transport-layer port number
rather than an application-layer identifier. Net-
worked applications like Skype [14] have methods to
bypass these port-based security measures.

Portmap [15] and DNS SRV [6] based systems like
Bonjour [3] are partial solutions that provide service
port discovery in the absence of assigned port num-
bers. However, these solutions still require applica-
tion developers to bind their application to a single,
consistent port.

As a solution, we propose (1) a daemon respon-
sible for service discovery and (2) a shared software
library that performs service registration and discov-
ery tasks. The library will allow applications to dy-
namically register with the daemon service, enabling
service discovery using a string-based naming scheme.
The applications will then use the shared library to
abstract away socket programming. The library will
handle all connection management and hide the ac-
tual port number used by the underlying TCP/UDP
connections. In this way, port numbers are used
strictly as session identifiers.

Our solution will open a new “tussle space” [4] on
the Internet between application developers and net-
work security teams, and will create new opportu-
nities in privacy, simplified application development,
and namespaces.

The structure of the remainder of the paper is as
follows: we will first discuss the problem and its ori-
gins as well as related work as a starting point for

1



the development of our own solution. We will then
explain the details of our design and how we imple-
mented it. Finally, we will make the argument that
the overall design represents a significant improve-
ment over the current state of the art.

2 History

To understand the problem that our work addresses,
it is useful to examine the origins of TCP and well-
known ports (WKP).

The authors of TCP originally presented the idea of
well-known sockets to provide basic service discovery
[1]. At the time of TCP’s creation, the authors were
focused more on building a reliable transport protocol
than on creating a service discovery and application-
layer protocol identification system [13]. The WKP
solution was easy to implement, and it was reasonable
for the Internet at the time since there were only a
couple of processes running on each host.

This “expedient convention” [13] was never in-
tended to be permanent. By 1972, the convention
was already in widespread use and RFC 322 [2] es-
tablished Postel and Cerf as the first official maintain-
ers of an ad-hoc well-known ports list. Postel pub-
lished the list and developers could ask to have their
applications added. In 1990, Postel and Reynolds
published the list of allocated numbers as an RFC,
calling it the ”Internet Assigned Numbers Authority”
(IANA) [12]. Later, ICANN took over the adminis-
tration of this list.

3 Problem

3.1 Well-Known Ports Offer Limited
Service Discovery Capabilities

Well-known ports (WKPs) have limitations that pre-
vent them from being an ideal solution to the service
discovery problem.

First, WKPs limit a host to running one instance
of an application. For example, port 80 is the well-
known port for the World Wide Web, and two in-
stances of a web server cannot run on a single host
since there is no way to distinguish between the them.

Similarly, there is no way to distinguish between dif-
ferent versions of a service.

Secondly, there is no method to distinguish be-
tween a protocol and the applications that use that
protocol. For example, voice over IP (VoIP) uses
the same session initiation protocol (SIP) as some
instant-messaging applications. Because all SIP traf-
fic is bound to a single port, users typically cannot
run both applications at once.

Finally, a numeric port offers no semantic inter-
pretation a priori. Numeric identifiers are difficult to
remember and cumbersome to use for ad-hoc service
identification.

3.2 Centralized Management of Ser-
vice Identifiers is Ineffective

There are several problems with using a central man-
agement point (IANA) to coordinate service discov-
ery.

First, centralization suffers from the problem of
stagnation. The current well-known ports list con-
tains many protocols that are never used and/or
owned by organizations that no longer exist [7].

Secondly, the amount of work required to obtain a
well-known port is unreasonable given the dynamic
nature of modern Internet application development,
and the benefits are too ill-defined to be a compelling
motivation. The registration process of a bureau-
cratic central authority stifles innovation by putting
an excessive burden on programmers during the de-
velopment of new applications.

Further, IANA offers no supporting infrastructure
for service discovery. There are other centralized ser-
vices that depend on a single point of registration.
DNS is an example of such a service that has been
widely successful. The difference between DNS and
WKP is that the DNS service is dynamic and sup-
ported by a worldwide infrastructure with multiple
levels of resolution. WKP lists are static and there is
no supporting infrastructure aside from distribution
of the list with with operating systems.

All of these problems prevent IANA from being an
effective means of port-to-protocol association.

2



4 Solution

This paper presents Moniker, a solution that decou-
ples port and protocol by randomly assigning port
numbers to services at run-time.

Using Moniker, network applications register and
request services using a semantically-meaningful
string to explicitly identify applications and their
versions. In in the new model, registration of ser-
vice identifiers is now the responsibility of the end-
points, rather than a central management point (such
as IANA).

4.1 Key Elements

Our solution is characterized by two main attributes:
(1) we use string-based service identifiers instead of
numbers, and (2) we assign random unused port num-
bers to services.

Our goal was to destroy all port/protocol asso-
ciation and invalidate any assumptions a developer
might make concerning the ports their application is
using. Moniker uses port numbers purely for session
identification, and the system itself will manage all
service-level identification and discovery.

4.2 Design

Our system contains two pieces: (1) a background
daemon and (2) a shared library.

The background daemon runs on a host and main-
tains a list of all services offered by applications on
that host. For backward compatibility, the daemon
runs on a designated port (ex. port 1) and listens
for incoming service requests. When the daemon re-
ceives a service request, it looks up the service string
in its list of registered applications and sends the port
number of the desired server application to the client.

The shared library abstracts away port numbers
from application development by brokering sessions
and abstracting all socket system calls. Server appli-
cations use the shared library functions to register a
service with the daemon. The application specifies a
service identifier string and the library selects a ran-
dom unused port number. The library then registers

this information with the daemon, which stores the
identifier-to-port association.

Clients can make service requests using the
Moniker library by specifying a host name and ser-
vice identifier. The library then sends a service query
message to the server daemon on the remote host and
the daemon responds by providing the port number of
the desired application. Both sides then create sock-
ets to establish a session. After the session has been
created, the library provides wrappers for standard
socket functionality. Since applications communicate
using Moniker-wrapped socket calls, they are never
aware of the port number being used. This achieves
our goal of port and protocol decoupling.

4.3 Implementation

Table 1 Daemon comparison
portmap Bonjour monikerd

Service-port X X X
association

Host-specific
query for X X
services

Dynamic
application X X
registration

We considered using two existing daemon services
(Portmap and Bonjour) to perform service/port asso-
ciation, but both of them had significant deficiencies
stemming from their underlying libraries. In the end
we decided to implement our own service to provide
all the needed functionality, and here we present a
comparison of the three services (see Table 1).

Portmap was designed to be used for remote pro-
cedure calls, and it provides a simple mechanism
for service discovery by associating service names
with their corresponding port numbers. However,
Portmap lacks the ability to dynamically register new

3



services, since all service associations are initialized
statically using configuration files.

Bonjour is Apple’s zero-configuration service dis-
covery framework. It provides a multicast-based
framework for host and service discovery. Although
Bonjour possesses more functionality than Portmap,
it lacks the ability to send port queries directly to a
specific host. This feature is crucial to our system,
but Bonjour requires a centralized network server to
broker this queries.

The final implementation of the Moniker daemon
combines the functionalities of Portmap and Bonjour
to provide the three crucial features needed for our
system to work: (1) service-to-port association, (2)
dynamic service registration and management, and
(3) direct host-to-host querying.

Figure 1 Server Registration Process

Listings 1 and 2 show a sample implementation of
a moniker based application.

The process for registering a service called “star-
wars” with Moniker is as follows (see Figure 1):

1. The server application calls
mon service(“starwars”)

2. The library binds a new socket to a random port
(assume it selects port 9876) and notifies the dae-
mon of the new service

3. The daemon stores the association between port
9876 and “starwars”

4. The library returns a service handle to the server
application

Figure 2 Client/Server Connection Process

The process for establishing a connection between
a client and the “starwars” server is as follows (see
Figure 2):

1. The client application calls
mon connect(hostname, “starwars”)

2. The Moniker library sends a query for the
“starwars” service port number to the remote
Moniker daemon

3. The server daemon looks up the port number for
“starwars” in the association table

4. The server daemon sends the port number back
to the client’s Moniker library

5. The client’s Moniker library makes a connection
to the server’s Moniker library using the given
port number

6. On both sides, the Moniker library returns a
handle for the new connection

We believe that this prototype realizes the original
service-discovery vision of the authors of TCP, since
the authors intended network communication to
resemble inter-process communication:

4



Processes are viewed as the active ele-
ments of all HOST computers in a network.
Even terminals and files or other I/O media
are viewed as communicating through
the use of processes. Thus, all network
communication is viewed as inter-process
communication [1].

Listing 1 Sample Client
...

moniker server;

struct sw_request req;

struct sw_response resp;

int ret;

...

ret = mon_connect(&server, argv[1],

SERVICE_STRING, MON_STREAM,

SERVICE_VERSION);

ret = mon_send(&server,

(char*)(&req), sizeof(req));

ret = mon_recv(&server,

(char*)(&resp), sizeof(resp));

ret = mon_close(&server);

...

5 Implications

5.1 Security

Firewalls typically implement basic security by fil-
tering packets based on their source and destination
port. After the deployment of Moniker, this port-
based identification of application protocols will no
longer be possible. This fundamental shift in com-
munication processes demands a fresh re-evaluation
of network security methods.

There are three ways to secure a network in which
end hosts connect to services using Moniker. First,
Moniker-aware packet filtering software can attempt
to identify packets in the middle of the network by
examining the Moniker query and connection pack-
ets. This type of filtering would have the same pit-
falls as port-based filtering today. Another method

Listing 2 Sample Server
...

moniker server, client;

struct sw_request req;

struct sw_response resp;

int ret;

...

ret = mon_service(&server, MON_STREAM,

SERVICE_VERSION, SERVICE_STRING);

ret = mon_listen(&server, 100);

while (1) {

ret = mon_accept(&server, &client);

if (fork() == 0) {

ret = mon_recv(&client,

(char*)(&req), sizeof(req));

...

ret = mon_send(&client,

(char*)(&resp), sizeof(resp));

ret = mon_close(&client);

return EXIT_SUCCESS;

}

}

ret = mon_close(&server);

...

}

5



is to filter based on deep packet inspection, which at-
tempts to identify traffic using various content-based
techniques [9, 8]. A final option is to ignore security
issues in the middle of the network, and focus instead
on securing end hosts.

The only viable options will be either to improve
deep packet inspection firewalls or properly secure
end hosts. A Moniker-aware firewall can only identify
the service of a flow if the initial session discovery ex-
change is sent in clear-text and the service string ac-
curately identifies the service being used, while deep
packet inspection firewalls can filter traffic without
observing any service discovery exchanges. Securing
the end hosts provides the highest level of protection
in a Moniker-based system. Moniker policy can be
set to limit end hosts to connections with authorized
services. Also, there have been an increasing number
of automatic update systems built into operating sys-
tems and other software in order to keep end system
software up-to-date and secure.

It is probable that malicious users will attempt to
bypass service-based security by tunneling over ac-
cepted services, but this is not a problem unique to
Moniker since port 80 tunneling is widely considered
the status quo today. Our proposal simply formal-
izes and clarifies the security situation, acknowledg-
ing that deep packet analysis has always been the
only way of truly identifying network traffic, and that
securing end hosts will prevent them from being com-
promised no matter how inadequate the middle-of-
the-network security is.

Widespread use of Moniker could prompt a rebirth
in the network security community by forcing the de-
velopment of better content-based analysis methods
and more effective ways of securing end hosts.

5.2 Application Development

Our proposal has four significant application devel-
opment implications.

First, our proposal eases the actual process of net-
work programming. Instead of being forced to use
a port number that lacks semantics, the application
developers can choose a string-based identifier that
more uniquely and intuitively represents their appli-
cation. Furthermore, the Moniker library provides

a wrapper for many socket functions, which reduces
the amount of code needed to create a networked ap-
plication.

Second, Moniker enables developers to quickly
swap out transport protocols. Previously, developers
would have needed to tunnel traffic over the exist-
ing protocol (as with TCP and SNA [11]) or add the
new protocol functionality to all client programs (as
with SCTP [5]). With Moniker, the protocol devel-
oper would only have to add their code to the shared
library and the functionality would automatically be
available to all applications.

Third, URIs are simpler to remember and more
descriptive. The intuition and simplicity of URIs
have made them increasingly common in networked
applications. Moniker can take advantage of URI’s,
making service discovery even simpler. For instance,
instead of identifying the “starwars” server on port
9876 using “theforce.net:9876”, a user would spec-
ify the URI “starwars://theforce.net”. The latter is
easier to remember because it explicitly names the
service requested.

Fourth, the general deployment of applications is
far easier once port and protocol are decoupled. This
is partially because programmers no longer have to
send all traffic to and from a single allowed port (ex.
port 80) [10] or apply for their IANA-registered port
to be opened. In addition, there is no longer a central
registration point that must approve a port assign-
ment. Each application self-advertises to the host.

5.3 Namespaces

Currently, URIs identify shared resources on a net-
work. For instance, a user would make a request for
the IETF website using the following command:

lynx http://www.ietf.org

This command requests HTTP from the IETF
server. Applications actually interpret the the
“http://” portion of the string as meaning “port 80,”
using some built-in association between “http” and
“port 80.”

Moniker uses the same URI syntax, but adds op-
eration semantics. Using Moniker, the URI library

6



can simply query the remote host to obtain a ser-
vice’s port number instead of consulting a local port
association table. For the previous example, the
client Moniker library will query the “www.ietf.org”
host for the port number associated with the “http”
service, and will then create a connection with the
HTTP server.

This new URI method easily lends itself to the ad-
dition of namespaces. For example, if one wanted
to access Joyce Reynolds’ web server on the IETF
domain today, the current solution would require a
subdomain or HTTP redirect. With an extension
to Moniker for parsing namespaces, the background
daemon on the server would be able to interpret the
following request:

lynx reynolds::http://ietf.org

This allows an arbitrary number of web servers
(or any other kind of service) to run on a single do-
main, using namespaces to distinguish between them.
Namespaces can also be used to identify and forward
service requests to users behind NATs, similar to Ap-
ple’s PMP-NAT protocol.

6 Future Work

Currently, our prototype supports the TCP and UDP
transport protocols. We would like to add support for
the SCTP protocol [5] to show that using Moniker,
developers can create applications that are agnostic
to the transport layer. This would allow existing ap-
plications to utilize new transport protocols with a
minimal amount of modification. We are also inter-
ested in integrating our system into URI resolution
libraries so it could be used by current network ap-
plications.

Currently, all Moniker service requests are unen-
crypted. To increase privacy, we would like to add
the option of encrypting service requests. This would
make it very difficult to identify an encrypted net-
work flow since there would be no clear-text session
initiation packet.

Finally, as a larger goal, we envision the addition of
a distributed, self-seeded, endpoint name resolution
service similar to Bonjour. The combination of our

system and such a framework would move all nam-
ing responsibilities to peers rather than a central reg-
istry. With this sort of system in place, a user could
query entirely by content, rather than by destination.
The name resolution service would oversee the rout-
ing of the packet to the proper host, and Moniker
would ensure that the connection is brokered with
the proper application on that host. As peer-to-peer
networks become more popular, this goal of end-to-
end content-based addressing becomes both desirable
and possible.

7 Conclusions

Service discovery is an important problem, and well-
known ports represent a working and widely-used but
non-ideal solution to the problem. We propose a
more ideal solution that completely decouples port
and protocol by adding a broker service that handles
end-to-end service registration and session manage-
ment. By randomly assigning port numbers, we inval-
idate any assumptions a developer may make about
port-to-protocol associations.

We believe the adoption of a system such as
Moniker will have several benefits: (1) network ap-
plication development will be simpler, (2) network
administrators will need to re-think security, and the
“tussle” between administrators and malicious users
will be clearer, and (3) namespaces will provide a new
way to identify service instances.

Acknowledgments

The authors would like to acknowledge the valuable
suggestions and feedback of Justin McCann.

References

[1] V. Cerf, Y. Dalal, and C. Sunshine. Rfc 675:
Specification of internet transmission control
program.

[2] V. Cerf and J. Postel. Rfc 322: Well known
socket numbers.

7



[3] S. Cheshire, B. Aboba, and E. Guttman. Dy-
namic configuration of ipv4 link-local addresses.

[4] D. D. Clark, J. Wroclawski, K. R. Sollins, and
R. Braden. Tussle in cyberspace: defining to-
morrow’s internet. IEEE/ACM Trans. Netw.,
13(3):462–475, 2005.

[5] R. S. et al. Rfc 2960: Stream control transmis-
sion protocol.

[6] A. Gulbrandsen, P. Vixie, and L. Esibov. A
dns rr for specifying the location of services (dns
srv).

[7] E. Lear. Port assignment procedures (ietf draft),
2006.

[8] J. Ma, K. Levchenko, C. Kreibich, S. Savage,
and G. M. Voelker. Unexpected means of proto-
col inference. In IMC ’06: Proceedings of the 6th
ACM SIGCOMM conference on Internet mea-
surement, pages 313–326, New York, NY, USA,
2006. ACM.

[9] A. W. Moore and K. Papagiannaki. Toward
the accurate identification of network applica-
tions. In Passive and Active Network Mea-
surement 2005 (Lecture Notes in Computer Sci-
ence series), volume 3431, pages 41–54. Springer
Berlin/Heidelberg, 2005.

[10] K. Moore. Rfc 3205: On the use of http as a
substrate.

[11] D. Ogle, K. Tracey, R. Floyd, and G. Bollella.
Dynamically selecting protocols for socket appli-
cations. Network, IEEE, 7(3):48–57, May 1993.

[12] J. Reynolds and J. Postel. Assigned numbers.

[13] G. Skinner. What if there were no well known
numbers? Postel.org forum posts, August
2006. http://www.postel.org/pipermail/
end2end-interest/2006-August/006123.
html.

[14] Skype limited skype and firewalls.
http://www.skype.com/help/guides/
firewalls/technical.html.

[15] R. Srinivasan. Rfc 1833: Binding protocols for
onc rpc version 2.

8


