
EasyCell: A Language for Describing Cellular Signalling Pathways

Cole Trapnell and Michael Lam

May 20, 2008

Abstract

Cellular biologists strive to accurately simulate in-
tracellular communication pathways using computa-
tional models. This kind of simulation allows for
study and experimentation without the expense of
a wetlab, but is tedious because of the complexity of
biological systems and the high resolution of current
modeling techniques. We have created a new lan-
guage called EasyCell for describing cellular pathways
using a simple yet powerful syntax, and we have writ-
ten a translator and runtime using a graph rewriting
back-end. We hope this work will eventually enable
systems biologists to more easily build and test sim-
ulations of cellular pathways.

1 Introduction

One major objective of molecular and cellular biol-
ogy is the construction of comprehensive models of
the mechanisms that drive cells. Understanding the
normal operation of the internal workings of cells in
various tissues and organisms is key to treating dis-
ease. Unfortunately, these mechanisms are difficult
to observe in operation in the cells, or in vivo. While
there is a vast array of ‘wetlab’ techniques available
to probe the workings of part of a cell, these tech-
niques are time-consuming and expensive to execute.
Some techniques involve replicating parts of a bio-
chemical mechanism, such as a signalling pathway,
in a test tube. These in vitro models are easier and
cheaper to manipulate but still require time, skilled
labor, and costly reagents and equipment to build.

These small-scale cellular and molecular biologi-
cal methods have been steadily developed and suc-
cessfully executed for many years. However, within
the last two decades, enormous advances in DNA se-
quencing and high-throughput protein assays have
produced an explosion of biological data. The entire
genomic sequences for many complex organisms are
now known, including those of thousands of bacteria.
The network of protein-protein interactions (or “pro-
teomes”) are beginning to be measured with high-

throughput assays such as yeast two-hybrid and tan-
dem mass spectrometry. [11, 7] The challenge for life
scientists is to analyze this enormous volume of data
and use it to build a more complete model of the
workings of cells. To use a programming metaphor,
imagine that we have obtained a copy of the binary
executable for an enormously complex program. The
challenge faced by life scientists is like trying to fig-
ure out exactly how that program works simply by
looking at the sequence of ones and zeros in the ex-
ecutable, without knowing the instruction set archi-
tecture of the machine.

A promising approach to building good cell mod-
els is to synthesize genomic and proteomic data into
a computer program that simulates the workings of
a particular cellular mechanism. The emerging field
of computational systems biology attempts to build
so-called in silico models. These simulations take as
input a description of the mechanics of the cell along
with some initial conditions, and produce as output a
state or a set of reachable states for that cell. The me-
chanics are often described as equations that govern
how populations of proteins and molecules, termed
species by the literature, change over time and inter-
act with each other. [8] The output in such models
is the set of populations of these species. A potential
drawback to equation-oriented, high-level population
models of cell mechanics is that one must be fluent
in systems of differential equations in order to build
them.

In this paper, we propose a new domain-specific
programming language, EasyCell, and corresponding
runtime environment for expressing signalling path-
ways in a user-friendly way. This language is a pro-
totype; it is not yet expressive enough to describe all
known signalling pathways. However, EasyCell can
express many pathways very simply, using keywords
and grammatical constructs that should be familiar
to a cell biologist.

The paper is organized as follows: we first
briefly review previous modelling approaches, with
a description of the classic epidermal growth fac-
tor (EGF) signalling pathway. We then describe
EasyCell’s grammar and implementation. We then



C. Trapnell and M. Lam EasyCell 2

present highlights from a case study of a complex bi-
ological pathway in EasyCell. We conclude with a
description of future work and enumerate some spe-
cific features that will increase EasyCell’s expressive
power.

2 Background

2.1 EGF Pathway

The epidermal growth factor (EGF) pathway is often
a first target for in silico modeling systems. We will
use this pathway as an example, so we introduce it
here for the readers who are not familiar with it. Fig-
ure 1 shows the general layout of components in the
first part of the pathway.

The EGF pathway features a chain of protein in-
teractions and binding events that control an array
of cell functions and determine the fate of the cell.
Notably, the pathway is initiated by the binding of
the hormone EGF to a receptor on the surface of the
cell and culminates in the transcription and expres-
sion of numerous genes, including the gene for EGF
itself. The EGF pathway has been implicated in nu-
merous cancers including breast tumors and small cell
carcinoma of the lung, and the EGF receptor is over-
expressed in the majority of solid tumors. [6]

GRB2

EGF

SOS

Downstream
transcription

EGF receptor

Figure 1: A partial view of the classic epidermal
growth factor pathway. Signalling is intiated by bind-
ing of the hormone epidermal growth factor (EGF) to
EGF receptor (EGFR), which triggers dimerization
and phosphorylation of EGFR. Proteins GRB2 and
SOS complex with dimerized EGFR and ultimately
intiate downstream transcription and expression of
numerous genes. The EGF pathway regulates cell
proliferation, differentiation, and survival.

As presented below, we are able to represent the
first portion of the EGF pathway very simply in Easy-
Cell (see Figure 3).

2.2 Systems Biology Models

Some of the earliest systems biological models were
purely analytic - often complex systems of differen-
tial equations that drew mainly on population dy-
namics literature. Ecologists and population biolo-
gists modeled the dynamics of rabbits and foxes, and
immunologists similarly tried to describe the popu-
lations of B cells and T cells in response to antigen.
More recently, researchers have attempted to build
more general simulations based on varied techniques,
including cellular automata [1], petri nets, [5] and
rewriting systems [3, 2].

While each approach has advantages and disadvan-
tages, the rewriting-based systems are particularly
attractive because they allow very simple expression
of complex system dynamics. Rewriting systems such
as Kappa [3] and BioNetGen [2] express cell dynamics
as a series of rules, each of which is structured as an
operation to be performed on a set of elements such
as proteins.

Kappa [3] is a rule- and agent-based language ab-
straction for describing protein interactions. The lan-
guage provides mechanisms for describing how the
sites of various proteins can bind and under what
conditions these bindings can take place. The authors
of Kappa believe that the granularity this language
provides is sufficient to handle most current practical
applications, and provide an example using the EGF
pathway.

The BioNetGen converter [2] is implemented in
Perl and takes as input a description file that defines
1) rate constants and concentrations, 2) molecular
components, 3) reaction rules, and 4) output func-
tions. It produces a chemical reaction network in
a format that is readable by several ordinary differ-
ential equation (ODE) solvers and simulators. Using
this system, the authors were able to generate models
for antigen-related signaling events, EGF, mitogen-
activated protein kinase cascades in yeast, among
others.

2.3 Graph Rewriting

EasyCell runs on top of GrGen [4], a generic C#
framework for fast graph rewriting. It provides the
ability to manipulate graphs deterministically using
patterns and transformation rules. Figure 2 shows an
example of a GrGen rule. The GrGen language pro-
vides great flexibility but at a much finer granularity
than is necessary for cellular biology. We believe that
by wrapping GrGen in a higher-level descriptive lan-
guage, we can provide a system that is both powerful
and easy to use for systems biologists.



C. Trapnell and M. Lam EasyCell 3

// EGF binds to its receptor
rule ActiveEGFR {
e1:EGF;
e2:EGFR;
negative {
e1 <-- temp1:EGFR;

}
negative {
e2 --> temp2:EGF;

}
modify {
e2 --> e1;

}
}

Figure 2: This GrGen example rule shows the first
step of the EGF pathway (an EGF protein binds to a
receptor). The pattern specifies that the rule matches
a node of type EGF and a node of EGFR that are
not already bound to nodes of the other type. If
this match occurs, the rule will fire and the “mod-
ify” command will create a new link between the two
nodes.

3 Language

We designed the EasyCell language with the primary
goal of making it easy to understand without exten-
sive programming background. Previous computa-
tional systems biology tools have a high technical bar-
rier to entry; one must be an expert C++ program-
mer, for example, or be very comfortable building
systems of differential equations. EasyCell keywords
and phrasing are drawn from molecular and cellular
biology (ex. “bind” or “transfer”) wherever possible.

An EasyCell program is structured as a set of pro-
tein and molecule declarations, followed by a series of
rules that specify how those proteins interact. There
are currently three main rule constructs in EasyCell:
bindings, generators, and environments. All of the
rules operate on domains, which represent a phys-
ical molecular interface. All proteins have at least
one domain. Some proteins, which we call compound
proteins, have more than one domain. To specify a
particular domain in a protein or a group of bound
proteins, the programmer may use the “in” clause. To
add conditions or constraints to a rule, a programmer
may use the “where” clause.

EasyCell systems are implemented as dynamic
graphs. Nodes for proteins are introduced by the
environment statement, and then edges between
them are added by binding and generator rules. New
nodes are also added and deleted by these rules to

domain SH2;

domain SH3;

domain PS;

protein EGF;

protein EGFR;

protein GRB2 {

domain SH2[2];

domain SH3;

};

protein SOS;

binding EGF binds EGFR produces

complex ActiveEGFR;

binding ActiveEGFR binds ActiveEGFR

produces complex EGFRDimer;

generator

EGFR in ActiveEGFR in EGFRDimer

produces PS[3];

binding

SH3 in GRB2

binds PS in eg:EGFR in ActiveEGFR in EGFRDimer

produces complex EGFRGRB2

inhibited by ps:PS in eg where ps in EGFRGRB2;

binding

(SH2,SH2) in gg:GRB2

where sh:SH3 in gg and sh in EGFRGRB2

bind SOS

produces complex EGFRGRB2SOS;

environment {

EGF[2];

EGFR[2];

GRB2[6];

SOS[6];

};

Figure 3: Representation of the EGF pathway in the
EasyCell language



C. Trapnell and M. Lam EasyCell 4

represent groupings of proteins into complexes. We
have attempted to hide the graph dynamic underpin-
nings of EasyCell from the grammar itself, so that as
the language’s implementation evolves, the grammar
will be unchanged.

Figures 7-10 give the complete parser grammar for
EasyCell. The lexer rules are straightforward and
have been omitted here for brevity.

3.1 Bindings

This construct represents the binding of two proteins
or molecules to create a new complex. Binding events
are central to the functioning molecular and cellu-
lar mechanisms. As proteins bind together, the bio-
logical system changes state, transports protein and
molecular products across the system, or simply con-
veys information at a molecular level. Binding events
are thus central to the way in which biologists discuss
pathways. In the EGF pathway, expression of genes
is activated through a sequence of binding events.

From a graph dynamics viewpoint, a binding cre-
ates a new parent node for both involved entities.
This parent node represents the complex formed by
the two entities and provides a central access point.
We have also provided the capability of producing
“free” molecules or proteins (ie. unbound to the com-
plex node or either of the binding nodes).

3.2 Generators

When binding events occur, there may be side ef-
fects that modify the participating proteins, or the
generation of small free molecules. While these ef-
fects could be modeled using binding rules, doing so
would be clumsy, so we have introduced generators
as a convenience.

A generator is a reflexive binding. The pattern
specifies a single node that produces other nodes (ei-
ther free or bound to the generator). In our exam-
ples, this is used to model phosphorylation, in which
a given protein “sprouts” new phosphor groups un-
der given conditions (i.e. the protein has been bound
into a certain type of complex).

3.3 Environments

The environment specification allows the program-
mer to dictate the starting point of the simulation.
Each simulation should contain exactly one environ-
ment. Syntactically, an environment consists of a list
of proteins, compound proteins, and molecules, with
an optional indicator of how many of them should be
instantiated.

Figure 5: EGF pathway simulation in YComp with
an activated, dimerized and partially phosphorlyated
EGF receptor visible on the left and an unbound
GRB2 protein visible on the right.

4 Translator and Runtime

Using the ANTLR [10] parser generator, we wrote a
translator from EasyCell descriptions into the three
files needed by GrGen: 1) a model file containing do-
main, molecule, and protein declarations, 2) a rule file
containing rewrite patterns and modifications, and 3)
a GrShell script file for loading and running the sim-
ulation.

The translator consists of an LL(1) parser/lexer
and code generator. Each rule that involves pars-
ing graph information returns a data structure that
roughly represents the corresponding graph pattern.
The code generation is currently inline for simplic-
ity and easy of development, although we believe it
would be relatively simple to move the code genera-
tion into its own module.

One interesting aspect of writing the translator was
dealing with compound proteins. These are proteins
containing multiple domains that must be matched
separately, but must be treated as a whole in gener-
ations. We address this problem by keeping a list of
compound proteins (with their subcomponents) and
referring to this list whenever it becomes necessary
to instantiate a compound protein.

Currently, the EasyCell translator creates a Gr-
Shell script file to run the simulation. This script file
uses a Java-based debugger interface provided with
GrGen called YComp to visualize the simulation and
allow the user to step through the rewriting process.
Figure 5 shows a screenshot of the EGF pathway sim-
ulation in YComp.



C. Trapnell and M. Lam EasyCell 5

Figure 4: A high level view of the cytokinin signal transduction pathway in A. thaliana. Image from [9],
copyright AAAS, used with permission.

5 Case Study: cytokinin in A.
thaliana

The model organism Arabidopsis thaliana, or thale
cress, was one of first complex organisms to be se-
quenced. A. thaliana is believed to share a signal-
ing pathway that is common to most plants. The
cytokinin signal transduction pathway controls vari-
ous developmental functions and responses to exter-
nal stimuli, and is much more complex than the EGF
pathway. We chose to implement a high-level view of
this pathway in EasyCell as a test of EasyCell’s ex-
pressiveness. We have identified several limitations of
the language, which we will address as development
continues. [9]

The cytokinin pathway, shown in Figure 3.3, fea-
tures several biomolecular processes not found in the
EGF pathway. First, the pathway uses a phosphore-
lay, a mechanism in which proteins pass a phosphor
group from one to another as a means of transmit-

ting information. This phosphor group originates at
a transmembrane receptor and is passed from pro-
tein to protein until it binds with a transcription
factor. Once phosphorylated, this transcription fac-
tor allows the expression of an array of genes. This
mechanism requires complexes that are transient—
once bound, proteins must at some point dissociate
from each other. As discussed below, EasyCell lacks
an adequate means of expressing dissociation.

Much of the pathway was representable with no
changes to EasyCell. Other parts of the pathway were
expressible after only minor changes to the language
or its implementation. For example, the expression
of new genes necessitated the creation of new free
(uncomplexed) proteins into the environment. The
produces statement was enriched to recognize an op-
tional free keyword, indicating that the product was
not a part of a complex.

The cytokinin pathway also specifies that certain
proteins compete with other for binding partners.
Conversely, some proteins may bind with multiple



C. Trapnell and M. Lam EasyCell 6

// many proteins become phosphorylatable
// at some point
property Phosphorylatable {
generator self produces PHOSPHOR[3];

}
...
EGFR in ActiveEGFR is Phosphorylatable;

Figure 6: Example of “properties” idea (generic
rules)

other partners, and may prefer binding with one type
of protein over another. So called preferential bind-
ing is a hallmark of both intracellular pathways and
networks of the interactions of whole cells. EasyCell
cannot express preferential binding, and will need to
do so before it is able to completely simulate complex
systems such as the Arabidopsis cytokinin pathway.

6 Future Work

Our initial implementation of EasyCell lacks a means
of dissociating complexed proteins from one another.
We plan to implement an unbinds statement that
takes a complex and splits it into two pieces. This
is not necessarily an inverse operation to the binds
operator, since the unbinds operator may split com-
plexes arbitrarily. This necessitates a somewhat com-
plex topological change, and we have not finalized
a clean, expressive syntax for unbinds. However,
we attempted to implement a simpler statement to
specify that a member of a complex moves from one
complex to another. We wanted to be able to trans-
fer phosphor groups as part of a phosphorelay (see
Section 5). Unfortunately, transfer quickly became
similarly complicated, and we plan to revisit its syn-
tax in the future. In principle, transfer may be
implemented as an unbind followed by a bind, so we
may include transfer as a convenience expression
for that idiom, rather than a first-class element of
the language.

Although we did not have time to implement it,
we also believe it would be relatively simple and very
beneficial to add biological “properties” (ex. phos-
phorylation) in the form of the ability to parameter-
ize rules, similar to templates in C++ or generics in
Java. This would allow the programmer to specify
common reactions and behaviors, instantiating them
for given proteins as necessary. This promotes code
reuse and lowers the amount of work for the end user.
See Figure 6 for an example of how properties might
be useful.

A generic EasyCell rule would look like a normal
rule, but with the addition of a special “self” key-
word. The generic rule itself would not output any
code, but whenever a particular protein is imbued
with a particular behavior using the “is” keyword, a
copy of the rule is generated with all occurrences of
“self” replaced with that protein.

The usefulness of EasyCell could be greatly im-
proved by the addition of a standard library of com-
mon biological components and rules. This library
might take advantage of generic rules (see above) for
even more expressiveness and power. The availability
of a standard library would ease the burden on the
end user and provide additional stability (assuming
it is well-written and thoroughly debugged).

The most significant weakness of our current lan-
guage and translator is that there is currently no way
of easily expressing preferential or non-deterministic
bindings. This would likely require major changes to
the EasyCell runtime, as it would need finer control
over GrGen. Such control is possible, but will require
significant engineering.

7 Conclusion

We have presented EasyCell, a prototype language
for expressing cellular signalling pathways. EasyCell
runs on top of GrGen, a fast graph rewriting sys-
tem, and includes a translator, runtime, and basic
visualization for building, running, and viewing sim-
ulations. While EasyCell has some significant lim-
itations, none are insurmountable. The language is
already able to express a wide array of pathways, such
as the classic epidermal growth factor pathway, and
with some additional improvements will be able to
express much more complex pathways. In silico ex-
periments are not yet practical, primarily due to the
difficulty of working with existing modeling systems.
We believe that EasyCell is significantly easier to use
than existing tools, and will allow the inexpensive
investigation of complex pathways.

References

[1] Advait Apte, John Cain, Danail Bonchev, and
Stephen Fong. Cellular automata simulation
of topological effects on the dynamics of feed-
forward motifs. Journal of Biological Engineer-
ing, 2(1):2, 2008.

[2] Michael L. Blinov, James R. Faeder, Byron
Goldstein, and William S. Slavacek. Bionet-
gen: software for rule-based modeling of signal



C. Trapnell and M. Lam EasyCell 7

transduction based on the interactions of molec-
ular domains. Bioinformatics, 20(17):3289–3291,
2004.

[3] Vincent Danos, Jerome Feret, Walter Fontana,
Russell Harmer, and Jean Krivine. Rule-based
modelling of cellular signalling. In 18th Interna-
tional Conference on Concurrency Theory, Pro-
ceedings, September 2007.

[4] R. Greiß, G. V. Batz, D. Grund, S. Hack,
and A. M. Szalkowski. GrGen: A fast SPO-
based graph rewriting tool. In 3rd International
Conference on Graph Transformations (ICGT
2006), Proceedings, September 2006.

[5] Simon Hardy and Pierre N. Robillard. Petri net-
based method for the analysis of the dynamics of
signal propagation in signaling pathways. Bioin-
formatics, page btm560, 2007.

[6] Roy S. Herbst. Review of epidermal growth fac-
tor receptor biology. International Journal of
Radiation Oncology, 59(2):S21–S26, June.

[7] Lan Huang et al. The Identification of Protein-
Protein Interactions of the Nuclear Pore Com-
plex of Saccharomyces cerevisiae Using High
Throughput Matrix-assisted Laser Desorption
Ionization Time-of-Flight Tandem Mass Spec-
trometry. Mol Cell Proteomics, 1(6):434–450,
2002.

[8] Hiroaki Kitano. Computational systems biology.
Nature, 420, November 2002.

[9] Bruno Muller and Jen Sheen. Advances in
Cytokinin Signaling. Science, 318(5847):68–69,
2007.

[10] Terence J. Parr and Russell W. Quong. ANTLR:
A predicated-LL(k) parser generator. Software:
Practice and Experience, 25(7):789–810, 1995.

[11] Peter Uetz et al. A comprehensive analysis
of proteinprotein interactions in saccharomyces
cerevisiae. Nature, 403:623–627, February 2000.



C
.

T
rapnell

and
M

.
L

am
E

asyC
ell

8

(a) domain

(b) domain tuple

(c) domain access

(d) access expr

(e) free item (f) inhibit stmt

Figure 7: EasyCell Grammar Rules



C
.

T
rapnell

and
M

.
L

am
E

asyC
ell

9

(a) bind prod

(b) bind stmt

(c) gen domains

(d) gen stmt

Figure 8: EasyCell Grammar Rules



C
.

T
rapnell

and
M

.
L

am
E

asyC
ell

10

(a) transfer (b) transfers

(c) tx stmt

(d) array (e) decl domain

(f) decl stmt

Figure 9: EasyCell Grammar Rules



C
.

T
rapnell

and
M

.
L

am
E

asyC
ell

11

(a) env item

(b) env stmt (c) expr

(d) start

Figure 10: EasyCell Grammar Rules


