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Abstract—Approximate computing addresses many of the
identified challenges for exascale computing, leading to perfor-
mance improvements that may include changes in fidelity of
calculation. In this paper, we examine approximate approaches
for a range of DOE-relevant computational problems run on a
variety of architectures as a proxy for the wider set of exascale-
class applications.

We show anticipated improvements in computational and
memory performance and in power savings. We also assess appli-
cation correctness when operating under conditions of reduced
precision, and show that this is within acceptable bounds. Finally,
we discuss the trade space between performance, power, precision
and resolution for these mini-apps, and optimized solutions
attained within given constraints, with positive implications for
application of approximate computing to exascale-class problems.

Keywords—Inexact computing, reduced precision, reduced
precision arithmetic, mini-apps. Beyond Moore’s Law, hard-
ware/software codesign

I. INTRODUCTION

High-performance computing is reaching a point at which
simply adding nodes and hoping to scale is not a sustainable
model, because of power, reliability and other concerns. In
addition, the impending post-Moore’s-Law era and the an-
ticipated end of CMOS scaling necessitate new and novel
approaches to computation. Inexact computing applies to a
wider range of these novel computing paradigms, as well as
to pre- and post-exascale conventional computing.

Inexact computing can be either probabilistic or determin-
istic. Unlike probabilistic computing, deterministic computing
produces the same result for each run, which may or may
not be precise, but differs from the exact result by the same
amount. In this paper, we study reduced precision computation,
a deterministic form of inexact computing.

Inexact computing addresses many, if not most, of the ten
challenges discussed in the DOE Advanced Scientific Comput-
ing Advisory Committee Subcommittee Report on the Top Ten
Challenges for Exascale [1], including energy efficiency, data
size (impacting bandwidth and storage requirements), memory
use, computational algorithms, resilience and correctness and
scientific productivity.

For this paper, we ran DOE-relevant scientific mini-
applications approximately using reduced precisions, thereby
saving power and enhancing performance with little impact

to computational fidelity. Our work in this area is part of
the DOE’s Beyond Moore’s Law program as part of the
Presidential Executive Order for the National Strategic Com-
puting Initiative (NSCI) Strategic Plan [2], intended to sustain
and enhance U.S. leadership in high-performance computing
(HPC) with particular reference to exascale and post-Moore’s
era goals.

II. APPROXIMATE COMPUTING FOR HPC APPLICATIONS

Our early investigations into inexact computing for HPC
applications concentrate on power and performance gains and
algorithmic changes, and at the same time, look at changes
in computational fidelity and correctness that may be induced.
Power is of especial interest as it is such a major obstacle:
according to [1], the energy efficiency of current systems must
improve by at least a factor of 8-10 to reach this stated goal
of 20 MW for an exascale system.

We focus here on approximate computing rather than
probabilistic computing, at least as a first attempt at inexact
for HPC using DOE-relevant applications. We made this choice
for several reasons: 1) because approximate computing is more
compatible with current developer expectations, 2) because
we suspected that it would be possible to perform scientific
calculations at lower precision than is currently used, at least
in parts of the calculations, and thought it possible to effect
such changes with fairly minimal disruption to the code base,
and 3) because we surmised that energy costs could be reduced
in this manner without significantly impacting the results. All
these reasons made approximate computing an attractive first
target.

We note that scientific computing is already approximate,
since all simulations are approximate. In fact, all floating
point computing is approximate, since only finite precision is
available on a digital machine. However, many scientific cal-
culations use the entire precision furnished by the architecture
just because it is available.

In contrast to this, the point of our work is to use limited
precision not just to the extent imposed by the machine, but
to reduce precision as far as one can. We attempt to run at
the different precisions actually required, at the algorithmic
and architectural component levels, but without impairing
correctness to the point that the simulation results are unusable.
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III. PRIOR WORK

A. Inexact Computing

Many effective techniques and methods for approximate
computing have emerged in the last decade that selectively
approximate computation to obtain disproportionate gains in
performance and storage cost reduction. These are described
in detail in a 2016 review of the field by Mittal in [3]. These
methods promise great benefit to a wide range of scientific
computing and other applications.

However, to take full advantage of these methods, care-
ful selection of application-specific approximation tactics is
required. In addition, the results of applications using approx-
imate computing must be carefully examined to ensure that
the results are “close enough”, meeting scientific standards as
per an application-appropriate distance metric.

B. Reduced Precision

There have been many previous mixed-precision versions
of numeric codes [4–15]. These efforts demonstrate that in
some cases, mixed-precision code can achieve similar accuracy
to the original double-precision code while being significantly
faster and reducing memory pressure. These efforts span many
problem domains, such as dense linear algebra routines [4, 6],
finite element methods [5, 11], fluid dynamics [8], lattice
quantum chromodynamics [7], atmospheric models [9], Monte
Carlo simulations for financial market analysis [10], and semi-
Lagrangian methods [12]. Many of these efforts extend their
work to accelerators such as GPUs or other many-core archi-
tectures like Intel Phi as well as re-configurable architectures
such as FPGAs. There is also at least one effort that has
started with a mixed-precision code and improved it further
by enhancing the numerics [13]. Duben et al. [14] showed
potential energy savings by the use of reduced precision
techniques on PageRank and on the Intermediate General
Circulation Model (IGCM) climate modeling application run
on a simulated architecture, and in [15], ran a simple fused-
multiply-add benchmark on a currently available Intel core i7
4770 (3.40 GHz) with 16 GB of DDR3 RAM.

More recently, some groups have built tools for analyz-
ing numerical codes with the goal of automatically building
mixed-precision versions or in some way informing their
development. Dynamic approaches include instruction-based
analysis tools such as CRAFT [16, 17], variable-based analysis
tools such as Precimonious [18] and Blame Analysis [19],
and sampling-based approaches such as Herbie [20]. Static
approaches include Taylor-expansion-based tools such as FP-
Tuner [21] and SMT-based tools such as Rosa [22]. All of
these tools provide recommendations for reducing precision
while maintaining a specified amount of accuracy. In some
cases, such configurations must be realized using manual code
transformations for performance testing.

Again, approximate approaches vary among computational
problems and computer architectures. In this paper, we target
DOE-specific and DOE-relevant exascale-related mini-apps,
and we run on an assortment of commercial off-the-shelf
(COTS) platforms that are available now at DOE laboratories
while looking towards future trends in hardware in support of
codesign efforts.

C. Reproducible Global Sums

Precision reduction by itself may not be the best and most
accurate approach. Instead, we focus on choosing the level
of precision according to the needs of the calculation, and
even increasing precision, if needed. Increasing precision in
well-chosen sub-calculations can then enable the rest of the
calculation to be done at lower precision.

Work starting in about 2010 by several research groups
indicated that the most sensitive parts of numerical calculations
involved global sums across the entire computational domain.
Studies by Robey [23], Demmel and Nguyen [24], Chapp [25],
and Iakymchuk [26] show that the typical error in global sums
can be reduced from about 7 digits of precision to 15 digits,
within a few bits of perfect reproducibility.

IV. METHODOLOGY

Throughout this work we seek to understand the impact of
inexact methods, in this case by varying the precision of calcu-
lations for scientific applications that reflect the workloads on
DOE computing systems. We would like to address the effects
that reducing precision has on the power consumption and cost
of the computation as well as the validity and correctness of
the computational solution.

We approach this as a true codesign problem: we are
developing the algorithmic approaches to DOE Advanced
Simulation and Computing (ASC) problems at the same time
that we are exploring emerging inexact architectures that will
natively give the promised power and performance benefits.
Two fundamental questions are:

� Which applications and algorithms benefit from inexact
methods and the power savings and resilience they afford?

� Which architectures will support these applications most
efficiently?

These applications and architectures are the ones that will gain
from the power and resilience benefits inexact computing will
provide.

We have selected a DOE mini-app and another relevant
mini-app that are amenable to varying precision to get a real-
world assessment of potential advantages and disadvantages of
lower precision. Other applications may show different effects
and may even need a different implementation methodology.

We start by using existing standard precision formats com-
monly available in current computing hardware as given in the
IEEE 754 standard [27]. We analyze results for performance
and storage benefits and for correctness, and will then partition
the application for more targeted benefits. This is sufficient for
a preliminary assessment of impact on a small set of mini-apps.

A. CLAMR

CLAMR is a hydrodynamic, cell-based adaptive mesh
refinement (AMR) mini-app developed at Los Alamos National
Laboratory (LANL). The CLAMR code simulates fluid motion
using the Shallow Water equations, and represents common
computational methods used in many important scientific com-
puting efforts [28]. CLAMR is open-sourced and used as a test-
bed for hybrid algorithm development using MPI and OpenCL
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GPU code [29]. Having different compile options for different
precision levels make CLAMR an ideal mini-app to run further
tests.

B. SELF

The Spectral Element Libraries in Fortran (SELF) is a set of
Fortran modules that define data structures and procedures that
facilitate rapid implementation of Spectral Element Methods
for solving a variety of scientific problems [30]. This frame-
work includes tools for specifying an isoparametric mesh, com-
puting derivatives in curvilinear coordinates, spectral filtering,
and time integration. Following the generalized formulation of
a conservation law, as in Kopriva (2009), the SELF provides
sufficient tools for quickly implementing approximate solvers
of partial differential equations. In this paper, we focus on an
implementation of the SELF that solves the 3-D Compressible
Navier-Stokes equations.

C. Experimental Process

The IEEE 754 standard defines finite binary formats, called
floating-point numbers, for representing real numbers. The
basic formats for floating-point numbers have varying widths
corresponding to different levels of precision - 16 bits (half
precision), 32 bits (single precision), 64 bits (double precision),
and more.

Compile options are available in CLAMR for setting
precision specifications (minimum, mixed, or full precision),
which were produced by the precision analysis of Lam and
Hollingsworth [17]. Minimum precision sets single precision
throughout the code. Mixed precision sets the large physi-
cal state arrays to single precision, but promotes all local
calculations to doubles. The goal is to save storage space
while keeping as much precision as possible elsewhere. Full
precision sets everything to double precision in the numerical
calculations. In all of these, graphics and plotting calculations
are kept at single precision since the resolution of screens and
plotters cannot benefit from higher precision.

D. Vectorization

In the past 15 years, Streaming SIMD Extensions (SSE)
have increased registers from support of operations on just two
double-precision floating-point numbers, to Advanced Vector
eXtensions (AVX) supporting operations on eight double-
precision floating-point numbers on current architectures like
the Xeon Phi x200 (Knight’s Landing). This trend highlights
the importance of vectorization in optimizing applications.

For the CLAMR runs, it was observed that the majority
of CPU time spent on floating-point arithmetic lies within
the finite-difference algorithm loop. This was not originally
vectorized, so we generated optimization reports using Intel
compiler flags and added OpenMP SIMD pragma statements
to enable vectorization of the finite diff loop, which performs
many floating point operations.

E. Architectures

The mini-apps were tested on both Intel processors and
Nvidia GPUs. More specifically, Intel Haswell Xeon Processor
E5-2660 v3, Intel Broadwell Xeon Processor E5-2695 v4,

TABLE I. SINGLE PRECISION IMPROVES CLAMR RUNTIMES AND

REDUCES MEMORY USE

Arch. Memory Usage (GB) Runtime Speedup
Min Mixed Full Min Mixed Full

Haswell 1.59 1.60 1.66 26.3 29.9 31.3 19%

Broadwell 1.59 1.59 1.66 25.3 31.0 31.4 24%

Tesla K40m 0.50 0.50 0.52 4.9 12.8 12.8 261%

Quadro K6000 0.50 0.50 0.50 4.2 10.6 10.6 252%

GTX TITAN X 0.50 0.52 0.58 2.8 12.5 12.7 453%

Nvidia GPU Tesla K40m, Nvidia Quadro K6000, Nvidia Tesla
P100 SXM2-16GB and GeForce GTX TITAN X were tested.

Many architectures were tested to assess the effect of
hardware choice on reduced-precision computation, toward
a goal of true codesign. Variations in the relative efficiency
of single and double precision floating-point computation on
a given choice of hardware should influence performance
of reduced-precision computing, especially on GPUs where
this variation can be large. Insights into hardware design
preferences for reduced-precision computing may help inform
codesign of future hardware to meet the challenges of exascale
computing.
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Fig. 1. Comparison shows slices of CLAMR simulation results are nearly
identical for each precision level (top) with 64 grid points and 2 levels of AMR.
Differences between full and mixed precision results are smallest (bottom)

V. RESULTS

A. CLAMR

We ran a cylindrical dam break problem in CLAMR on the
Haswell CPU with both a unvectorized and vectorized version
for a 64 × 64 and 128 × 128 grid with 2 levels of AMR.
The result for the first run is depicted in Figure 1, where we
plot the solution after 1000 iterations and study the difference
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TABLE II. ESTIMATED CLAMR ENERGY USE ON DIFFERENT

ARCHITECTURES

Architecture CLAMR Energy Use (Joules)
Min Mixed Full

Haswell 2762 3140 3287

Broadwell 3033 3725 3762

Tesla K40m 1054 2752 2752

Quadro K6000 945 2385 2385

GTX TITANX 700 3125 3175

among the solutions obtained along a cut-line passing through
the center of the domain for different levels of precision.

The performance gains and memory usage are shown in
Table III for varying levels of precision. The simulations used
an initial coarse grid with 1920×1920 cells, with a maximum
of 2 levels of AMR, and were run for 200 iterations. All
were run on Intel Haswell E5-2660 v3 processors. Initial,
unvectorized runs using minimum precision show some modest
performance gains (about 12% speedup) over runs using full
precision for both the total CPU time and the finite diff
function. When computing scalar floating point operations, the
reduction in precision has a limited impact on performance
gain. SIMD functions were implemented to vectorize finite diff
in CLAMR, improving performance greatly. This change high-
lights the performance gains of single precision calculations,
with a speedup of 1.9x in finite diff compared to full precision.

Although computation time when using mixed precision
was not significantly improved over using full precision, reduc-
tion in memory use and output file size was notable. For both
minimum and mixed precision, checkpoint output file sizes
were about 2/3 of those when using full precision. Memory
usage during the simulations was also reduced when using
less than full precision.

With a view to comparing the CLAMR results for three
different levels of precision, we study the numerical solution
on a vertical line-cut passing through the center of the domain
at the same iteration for each run. Figure 1 plots the fluid
height, as a function of the position along the line-cut, for
different resolution runs. It is observed that the plots for all
precision levels are visually indistinguishable. This figure also
depicts the differences in height among the runs at different
precision levels, which are typically at least five to six orders
of magnitude less than the magnitude of the height. From this
observation, we can conclude that a lower precision run does
not change the numerical solution to an appreciable extent to
be detected by the naked eye. The peak differences between
computed heights for full and minimum precisions are the
largest, whereas mixed precision produces remarkably similar
results to those of full precision. This makes mixed precision a
compelling choice for CLAMR simulations, as it can not only
save memory and storage, but can also result in a numerical
solution almost identical to its full precision counterpart. In
order to study the symmetric nature of the (ideally symmetric)
solution, we consider the numerical solution on each half of
the line-out. Extending from the left end all the way to the
center of the line-out, we plot the difference in the numerical
solution at every point, from that on the other half of the line-
out, equidistant from the center. This plot depicted in Figure 2
illustrates that a reduced precision run amplifies the asymmetry
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Fig. 2. Height Asymmetry for the CLAMR simulations

of the numerical solution. But even in minimum precision, the
magnitude of the differences are at least a factor of 10−6 less
than that of the solution.

Gains made in performance when using lowered precision
can be reinvested in other (often more precious) resources.
For example, a minimum-precision run could employ a greater
number of cells or levels of AMR, while keeping performance
near that of a full-precision run with less resolution. To test this
concept, we run a full-precision-low-resolution (Full-LoRes)
version as well as a minimum-precision-high-resolution (Min-
HiRes) version of CLAMR and plot the simulation slices in
Figure 3. We note that these two runs are not exactly equivalent
to each other due to complications introduced by AMR and
different time steps determined by using the same Courant
number. However, we compute the solutions at almost the same
instant of simulation time, scale the Min-HiRes run and plot
them in the same graph for ease in visualizing their differences.
Even though the solutions do not exactly align themselves for
the above-mentioned reasons, it is clear that the Min-HiRes
solution has a more detailed structure than the Full-LoRes
one. In this way, we can combine lower precision with higher
degrees of freedom, resulting in a better solution.

Different architectures were tested with CLAMR at all
three precision levels. Table I shows CLAMR runtimes im-
proved on all of these architectures, and better performance
on CPUs with reduced precision, as well as increased speedup
on GPUs. Memory use was consistently decreased with re-
duced precision on all architectures. CLAMR energy use was
estimated by multiplying nominal power specifications by
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TABLE III. CLAMR PRECISION COMPARISONS AND VECTORIZATION

Min. Precision Mixed Precision Full Precision

finite diff time unvectorized 11.4 12.3 12.7

finite diff time vectorized 4.8 8.9 9.2

Checkpoint file size 86M 86M 128M
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Fig. 3. Comparison of CLAMR simulation slices between a minimum
precision, high resolution run and a similar full precision, low resolution run

runtimes, and show significant energy savings when using
reduced-precision modes, as shown in Table II.

B. SELF

In this study, the SELF simulates an anomalous warm blob
that rises in an otherwise neutrally buoyant fluid, similar to the
initial condition in [31]. The domain consists of 20× 20× 20
elements, each with 8×8×8 quadrature points giving roughly
24 million degrees of freedom. When comparing run-time
between single and double precision, the intrinsic CPU_TIME
routine is placed around the main time integration loop, which
calls a 3rd-order Runge-Kutta time integrator 100 times.

1) CPU: SELF was tested on two nodes with different
architectures. The first node was an Intel Haswell E5-2660 v3
CPU and the second, an Intel Broadwell E5-2695 v4 CPU.
We initially tested a non-vectorized version of SELF with the
example thermal bubble problem using both Intel (v.17.0.0)
and GNU (v.4.9.3) compilers. Interestingly, the total run-time
was less for double precision than for single precision with the
GNU compiler on Haswell and Broadwell. This result, though
unexpected, indicates that reduced precision does not always
reduce run-time. Researching this issue is beyond the scope
of this paper but it definitely merits further investigation. With
the Intel compiler, however, the single precision run was less
time-consuming than the double precision one as expected.
These runtimes are shown in Table IV.

TABLE IV. NONVECTORIZED SELF CONSUMES LESS RUNTIME FOR

DOUBLE PRECISION THAN FOR SINGLE PRECISION WITH GNU COMPILER

Single Precision Runtime (s) Double Precision Runtime (s)

GNU 304.09 261.65

Intel 185.89 252.85

Adopting the same approach as with CLAMR, we took a
horizontal line-out of the numerical solution passing through
the center of the domain and plotted the density anomaly
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Fig. 4. Slice of SELF simulations for single and double precision levels
with 20 elements and polynomial basis functions of order 7 in each direction
(above) and the difference between them (below)

in Figure 4 for the single and double precision runs. As
in CLAMR, it is observed that the solutions for the two
precision levels are visually identical. The absolute difference
(∼O

(
10−5

)
) between the solutions for these precision lev-

els is two orders of magnitude less than the solution. The
difference between the density anomalies on either side of
the center of the line-out for each precision level are plotted
in Figure 5, demonstrating that for double precision, the
asymmetry oscillates frequently about the x-axis and assumes
almost equal number of positive and negative values with
similar magnitude. However, for the single precision run, the
asymmetry is mostly positive, implying that the solution on the
right half of the line-out is larger than the corresponding left-
half solution. As of now, we do not have a clear explanation
behind the nature of these plots. We suspect interpolation errors
may have played a role, which needs to be further investigated.

2) GPU: SELF performance gains with double and single
precision on GPUs are presented in Table V. For each run,
SELF was uses OpenACC on the GPUs with PGI 16.10 and
CUDA 8.0, and GCC 6.3.0 on the CPUs. Single precision
reduced run-times by roughly 30-35% on the Tesla K40m,
the Quadro K6000, and the Tesla P100 SXM2. However, the
speedup on the GeForce GTX TITAN X when using single
precision was 3x when compared to double precision. In fact,
SELF with single precision on the TITAN X outperformed
SELF using double precision on the P100. The TITAN X is
unique in our testing suite because its specifications have a
ratio of single-precision Gflops to double-precision Gflops of
32:1, while this ratio can be up to 2:1 for GPUs specifically
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Fig. 5. Asymmetry in Perturbation Density for the SELF simulations

targeted to the scientific computing market.

Performance results with SELF on GPUs shows the ben-
efits of single-precision floating-point. Since the scaling of
many modern applications is limited not by flops, but by
memory bandwidth, it makes sense to run applications with
single-precision calculations to save on memory use. This is
emphasized in Table V, where for our SELF runs with single-
precision, a TITAN X overcomes the generational divide and
competes well with a Tesla P100. Given the similar perfor-
mance of these GPUs and much higher costs of purchasing
the newer P100s, resources can be conserved in HPC centers
by investing in at least a partition with cheaper GPUs like the
TITAN X for high-performance approximate computing.

Power consumption was estimated for different architec-
tures for CLAMR and SELF with nominal specifications. By
multiplying this rough estimate of power by the runtime, we
estimated the approximate energy used for similar runs at
different precision levels, as shown in Table VI.

VI. COST ANALYSIS

Cost analyses for high-performance computing must ac-
count for the energy use of running a calculation on a typical
HPC installation, and it may also be desirable to include a
share of the hardware purchase cost and operational staffing
cost in the analysis. We start with the latter approach by using
the rates charged by commercial services.

TABLE V. SINGLE PRECISION IMPROVES SELF RUNTIMES AND

REDUCES MEMORY USE

Arch. Memory Usage (GB) Runtime Speedup
Single Double Single Double

Precision Precision Precision Precision

Haswell 2.7 2.7 179.5 270.4 51%

Broadwell 3.0 5.4 184.1 224.2 22%

Tesla K40m 2.3 4.4 40.1 53.7 34%

Quadro K6000 2.3 4.4 32.6 42.6 31%

Tesla P100 2.5 4.7 13.5 17.3 28%

GTX TITANX 2.3 4.5 16.1 49.7 309%

TABLE VI. SELF ON DIFFERENT ARCHITECTURES

Architecture SELF Energy Use (Joules)
Single Double

Precision Precision

Haswell 18795 28350

Broadwell 22080 26880

Tesla K40m 8617 11546

Quadro K6000 7335 9585

Tesla P100 3375 4325

GTX TITANX 4025 12425

TABLE VII. COST MODEL

Minimum Precision Mixed Precision Full Precision

CLAMR Compute Cost $223.22 $257.10 $267.07

CLAMR Storage Cost $121.66 $121.66 $181.56

CLAMR Total Cost $344.88 $378.76 $448.63

SELF Compute Cost $763.32 - $1157.94

SELF Storage Cost $792.59 - $792.59

SELF Total Cost $1555.91 - $1950.53

Conveniently, Amazon Web Services has a “Monthly Cost
Calculator [32].” We chose EC2 and S3 services as the most
applicable. We ignore data retrieval and transfer since we are
assuming on-site usage of our own HPC installation [33].
Applying all these factors, the minimum/mixed precision data
is about 2/3 the size of the full-precision values and the cost
is shown in Table VII.

The EC2 “c4.8xlarge” instance with Haswell family pro-
cessors and 60 GB RAM was selected as most similar to
other runs on more traditional HPC machines. Instances were
chosen with utilization estimated using our tested run-times on
the Haswell architecture, scaled up from seconds to hours per
week. Storage costs are an important component of budgeting
computing needs. In this AWS estimate, we used the S3 service
and scaled the normal storage and infrequent access storage
with the same factor as the compute time, but then reduced by
a factor of five to account for longer runs with fewer output
files. SELF costs were much more expensive, and so we scaled
the compute time down by 50%, as well as assuming the data
would be stored less frequently, reducing the storage amount
by a factor of ten. Data retrieval and transfer were not included
for simplicity, and support costs were ignored. Although float-
ing point compression can produce impressive storage savings
[34], additional compute costs for the compression algorithm
would complicate this simple cost model and so compression
is not considered. Though the choices for cost models may
change with each user, those presented here are chosen to be
representative of a typical application user’s needs.
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A cost model was obtained for both applications using the
Amazon Web Services cost modeling tool. The costs shown
in Table VII give a clear picture of the savings expected when
employing approximate computing. CLAMR shows a savings
of up to 23% of costs using minimum precision instead of full
precision and a 15% in savings using mixed precision instead
of full precision. SELF shows a savings of up to 20% using a
minimum precision implementation instead of full precision.
SELF does not have a mixed-precision option currently.

VII. CONCLUSION

We have demonstrated using real compute systems that are
now coming available that in two different DOE-relevant mini-
applications, reduced precision implementations can reduce
storage costs and increase performance by a factor of 2-3
times, with only modest changes to the application code base.
For implementations that use double precision and have large
percentages of floating point operations the results will likely
be similar.

The strong coupling of gains from improved data motion
through vectorization and faster computation speed has been
shown. Though this coupling is difficult to separate, we believe
memory bandwidth strongly limits representative applications,
so speedups shown are primarily due to improved data motion.

As a result of these precision changes, these codes can
run on a smaller number of nodes, use less storage hardware
and, most importantly, reduce power consumption for a given
simulation.

The benefits of having selectable precision levels within a
code base has also been shown. Users can choose the precision
suitable for the particular simulation they are running.

When the cost of a double-precision floating point op-
eration was the same as a single-precision operation, there
was only a small motivation to use anything but double
precision. Making smart decisions on precision is predicated
on the availability of different precisions in the hardware.
Architectures are now emerging that afford reduced precision
with commensurate power and performance savings.

It is time for application developers to jump on this
disruptive trend in computing capabilities.

VIII. FUTURE WORK

The goal of this project is an understanding of the al-
gorithms and architectures that are relevant to DOE mission
space. The DOE mini-apps provide a rich opportunity to
explore impacts of reduced precision in representative appli-
cations across a broad array of algorithm types.

This includes the derivation of heuristics for precision
choice, at the algorithm and sub-algorithm levels. The selection
of the correct precision to use in each step of an algorithm
requires a strong understanding of the method and also benefits
from years of experience. We will extend this work to look at a
broad range of mini-apps with different classes of algorithms.
The approaches to reducing precision will certainly vary,
although common patterns will be encountered.

We also need to understand the architectural advances
anticipated in coming years that will allow us to leverage these

techniques in the most efficient manner. We note that new
hardware with many more precision choices will be available
in the future. These may be driven by other application
domains such as machine learning. We plan to explore how
these hardware advances may be utilized in our community.
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