
TRAVELING SALESMAN: A HEURISTIC SCALING ANALYSIS
*

Quincy E. Mast, Zamua O. Nasrawt, Garrett L. Folks, Michael O. Lam
Department of Computer Science

James Madison University
Harrisonburg, VA 22807

540-568-3335
{mastqe, nasrawzo, folksgl}@dukes.jmu.edu, lam2mo@jmu.edu

ABSTRACT

In this paper, we analyze two heuristics that approximate the Traveling
Salesman Problem: K-Opt search and ant colony optimization. Our goal was
to explore how these heuristics perform when run in parallel on multiple CPU
cores as well as using GPU computing. We found that the K-Opt search
heuristic showed impressive performance scaling results, especially when
executed on a GPU. We also parallelized portions of the ant colony
optimization and found good scaling. We conjecture that the ant colony
optimization could be greatly improved with the use of GPU computing.

BACKGROUND
Traveling Salesman

The traveling salesman problem (TSP) poses the following question: given a
complete weighted graph of n cities (vertices) and the distances (edge weights) between
them, what is the shortest Hamiltonian cycle (a path that begins and ends in the same
vertex and passes through every other vertex exactly once)? TSP is classified as an
NP-Hard problem [1]. An exhaustive search is O(n!) time, and there is no known exact
solver faster than O(2n), where n is the number of cities to be visited. In this paper, we
analyze the parallel performance and scaling behavior of two common TSP heuristics
(K-Opt search and ant colony optimization). We also contrast these results with a robust
modern exact solver running serially.

* Copyright © 2017 by the Consortium for Computing Sciences in Colleges. Permission to copy
without fee all or part of this material is granted provided that the copies are not made or
distributed for direct commercial advantage, the CCSC copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires a
fee and/or specific permission.

19

JCSC 33, 3 (January 2018)

K-Opt Heuristic

The K-Opt heuristic continually permutes k edges of a path, attempting to improve
the current shortest path. We focus on 2-opt, the simplest version of this algorithm that
involves only two edges in each swap. Parallel implementations can test many swaps
simultaneously and then choose the single swap that will create the shortest tour.
LOGO-Solver is an implementation of this heuristic that approximates a solution for TSP
using a 2-opt local search [5]. It uses the process described above to keep improving tours
until it finds one that is within some percentage of the optimal solution. This assumes the
optimal solution is known, but the process can be terminated prematurely, returning the
current minimum tour.

Ant Colony Optimization

The ant colony optimization (ACO) is a probabilistic technique for finding "good"
paths through graphs. The premise behind ACO is that an ant will wander around
randomly until it finds a food source, after which it will lay down a pheromone trail so
that it can find the food again. Other ants in the colony will probabilistically choose to
follow stronger pheromone trails. Over time, the pheromone trails evaporate, leaving
longer trails to fade while shorter trails are continually reinforced, resulting in an
approximation of the overall shortest path.

This behavior produces relatively good solutions for paths through a weighted
graph. This can be applied to TSP by simulating ants traveling Hamiltonian cycles
through the cities. Parallelization of this process is done by simulating multiple ants
simultaneously and aggregating their pheromone trails. The implementation we used was
created by the original authors of ACO [2]. This package implements most of the
variations of ACO that exist and is quite robust; however, there is no parallel version
readily available. For this reason, we parallelized a portion of this implementation for our
analysis.

Outline

In the first section of this paper we analyze an existing implementation of the K-Opt
heuristic, presenting results of our experiments exploring the parallel scalability of this
implementation. Next, we discuss our parallelization of ACO and its performance
analysis results. Finally, we present experiments using a serial implementation of an exact
TSP solver, comparing it to the heuristics.

K-OPT HEURISTIC WITH LOGO-SOLVER
Methods

LOGO-Solver was the only available implementation of 2-opt search that included
both CPU- and GPU-parallel implementations [5]. We used this because it was already
heavily parallelized and didn't require any modification for our analysis. We designed our
own scaling tests and analyzed the results.

20

CCSC: Eastern Conference

Experimentation

We ran the program using inputs from TSPLIB, a standard TSP dataset library [4].
The library is large and includes instances modeled after real world problems such as
circuit board layout. Graph sizes range from 52 to 33,810 nodes, and the tests were
executed using various thread counts as well as a GPU. All tests were run on a single
server with dual Intel Xeon E5-2623v3 3.0 GHz CPUs with a total of 8 physical (16
hyper-threaded) cores, as well as an Nvidia Quadro K5200 GPU with 2304 CUDA cores.
We ran several trials for each experiment and took the minimum wall time results for
each test to minimize variation in the results due to the hardware and operating system.
The termination condition was set to be within five percent of the known optimal solution
for reasonable run times.

Results

Figure 1 displays scaling results for LOGO-Solver. The graph shows speedup for
several thread counts as we increased the problem size. The dark black line represents
serial execution, so points below this line are slower-than-serial execution times. This
immediately shows that there is no improvement in parallelizing until the problem size
reaches approximately 1000.

For small problem sizes, it is likely that the time needed to generate initial tours will
overwhelm the time spent optimizing those tours. Small input sizes are also more
significantly affected by threading overhead, and so higher thread counts actually
increases the time to solution. Even with larger inputs, the maximum speedup on a CPU
was about 7.5x.

The observed speedup from GPU acceleration highlights the strengths and
weaknesses of the GPU architecture, where data must be copied explicitly between the
host and the GPU. Until the problem sizes are large enough, the data movement time

21

JCSC 33, 3 (January 2018)

overshadows the computation time. After 1000 cities the GPU has enough computational
load to maximize utilization of its cores, allowing for increasingly greater speedups
compared to the CPU implementation. For the largest input size (33,810 cities) the GPU
achieved a 26x speedup compared to the CPU's 7.5x.

We used the Nvidia profiler
to verify that only 70-80 percent
of execution time was utilized for
computation with small problem
sizes while large problem sizes
approached 100 percent. This
trend is shown in Figure 2.
Smaller input sizes show the
inefficiencies of a GPU. The
architecture requires heavy
workloads to be efficient, and
small problem sizes don't provide
enough computational load for
maximal GPU efficiency.

Finally, we used the Amazon Web Services (AWS) cloud-computing platform to
determine the amount of CPU power necessary to match the performance of the GPU on
a single machine. We re-ran our tests on an AWS EC2 instance with 64 physical cores
and determined that this machine was almost able to achieve the same speedup as the
GPU. Overall the shape of the graph was the same as in Figure 1, but the scaling of large
instances on higher CPU thread counts improved. It still appears that a GPU is still
marginally faster than 64 CPU cores and is thus a much more cost-effective solution in
this domain ($0.90/hr vs. $3.20/hr on AWS).

ANT COLONY OPTIMIZATION
Methods

The referenced implementation of ACO is serial-only, and our goal was to
parallelize it and analyze its performance. Initial profiling showed that the majority of
runtime was spent doing tour constructions. The pheromone updates after each set of tour
constructions contributed minimally to the overall execution, so we focused on the tour
construction phase.

The tour construction phase consisted of a series of for loops without dependencies,
performing operations independently for each ant. As such, it was an ideal candidate for
parallelization using OpenMP. However, there were a few obstacles. Originally, the
program simulated a single step for a single ant in each iteration, but simulating a
complete tour for a single ant each iteration is far more conducive to parallelization as it
reduces the need for synchronization between steps. To do this, one nested loop needed
to be inverted so that the inner loop became the outer loop and vice versa. The second
hurdle was random number generation for the initial placement of the ants. We had to
modify how the seeds were allocated so that each thread was given a different seed to

22

CCSC: Eastern Conference

ensure that random number generation is independent between threads. After this, each
ant (or block of ants) could be simulated in a separate parallel thread.

Experimentation

The implementation of ACO that we worked with was CPU-only, although we
conjecture that it would be feasible to create a GPU implementation. We used the same
test inputs we used with LOGO-Solver. Each problem size was run on various thread
counts up to 64 threads on another AWS instance with 64 physical cores. We ran each
experiment for several trials and again took the minimum wall time results for each
experiment.

The termination condition for this implementation is either an optimal tour length
or a time limit. For a fair comparison, we multiplied the optimal tour length by 1.05 to
simulate the termination condition used with LOGO-Solver. The time limit was also
increased so that execution would not time out. Reasonable times were unachievable with
large problem sizes, so input was capped at 1000 cities. On larger instances the heuristic
seems to stagnate because more time is required for each incremental improvement.

Results

Based on our profiling analysis, we parallelized about 75% of the program's
execution, so Amdahl's Law estimates the maximum speedup to be around 4x. Initial
testing was performed on the previously mentioned 8-core (16-hyperthread) server and
speedup seemed to cap at 2x. This implementation is not doing as much heavy
computation, so the threading overhead is not masked by larger problem sizes. These
results were very underwhelming, so we re-ran the tests on another AWS instance with
64 physical cores. Using the more well-provisioned AWS machine, the results showed

23

JCSC 33, 3 (January 2018)

strong scaling (a decrease in wall time corresponding to an increase in thread count), and
performance approached the theoretical maximum speedup (see Figure 3). Unlike with
LOGO-Solver, we observed good scaling with much smaller problem sizes.

COMPARISON TO CONCORDE EXACT SOLVER

The Concorde solver is a modern serial CPU implementation that is currently
regarded as one of the best TSP exact solvers available [3]. This implementation uses a
branch-and-bound algorithm for large instances, but will choose other, faster algorithms
for smaller instances; this guarantees an optimal solution while performing better than a
brute-force approach. We found that Concorde is faster for finding exact solutions since
the heuristics are relying on randomization for improvement. For example, LOGO-solver
takes 30 seconds to get within a tight 0.2 percent error for 575 cities, while Concorde
takes 16 seconds to solve it exactly. It appears that Concorde does support parallel
execution, but the documentation is sparse and we were able to test only the serial
implementation.

It is not really fair to compare heuristics to exact solvers; however, it is interesting
to explore a problem where the problem space is split in terms of best solution approach.
Certain problems may require an exact solution while others may just need something
that is "close enough." If the user does not need the optimal solution then it is possible
to find a satisfactory solution in a fraction of the time with a heuristic approach. The
optimal approach depends on the needs of the user, based on how willing they are to trade
computation time for solution quality.

CONCLUSIONS

These different parallel implementations of TSP showed good scaling on both CPU
and GPU architectures. A 7.5x speedup was observed when executing a parallel
implementation of LOGO-Solver on CPU, and an exceptional 26x speedup on the GPU
when given large instances. However, the GPU implementation only excels when given
instance sizes over 1000 cities because the GPU must have enough computational load
to justify the cost of data movement.

We were unable to find other algorithms or heuristics with both CPU and GPU
implementations. Instead, we parallelized a serial implementation of the ant colony
optimization, a novel approach to solving the traveling salesman problem with some
inherently parallel elements. We observed speedups approaching the theoretical
maximum based on Amdahl's Law. This implementation has the potential to achieve even
higher speedups using a GPU.

Source code is available on Github: github.com/mastqe/470-gputsp

REFERENCES

[1] Cormen, T., Leiserson, C., Rivest, R., Stein, C., Introduction to Algorithms,
Third Edition, Cambridge, MA: The MIT Press, 2009.

24

CCSC: Eastern Conference

[2] Dorigo, M., Stützle, T., Ant Colony Optimization, Scituate, MA: Bradford
Company, 2004.

[3] Hahsler, M., Hornik, K., TSP infrastructure for the traveling salesperson
problem, Journal of Statistical Software, 23 (2), 1-21, 2007.

[4] Reinelt, G., TSPLIB - a traveling salesman problem library, ORSA Journal on
Computing, 3 (4), 376-384, 1991.

[5] Rocki, K., Suda, R., High performance GPU accelerated local optimization in
TSP, Proceedings of the 2013 IEEE 27th International Symposium on Parallel
and Distributed Processing - Workshops and PhD Forum, 1 (1), 1788-1796,
2013.

25

