
ANALYSIS OF PARALLEL IMPLEMENTATIONS OF

CENTRALITY ALGORITHMS *

Patricia D. Soriano, Kevin H. Amrein, Sam P. Carswell, and Michael O. Lam
James Madison University
Harrisonburg, VA 22807

540-568-3335
{sorianpd, amreinkh, carswesp}@dukes.jmu.edu, lam2mo@jmu.edu

ABSTRACT

This paper explores parallel implementations of three network analysis
algorithms for detecting node centrality: betweenness centrality (BC),
eigenvalue centrality (EC), and degree and line importance (DIL). All
solutions were written in the C programming language using OpenMP library
for parallelization. We evaluated these implementations for accuracy and
parallel scaling performance using five example networks. We found that the
algorithms accurately reflect different notions of centrality. While DIL
performs better in general because it is asymptotically faster than the other two
algorithms, BC demonstrates better parallel strong scaling.

INTRODUCTION

Networks are meaningful and prevalent in all fields of study. They represent the
connections and interactions among components in any complex system, ranging from
social relationships to chemical compounds. Analysis of networks provide rigorous
insight into community structures that may otherwise be overlooked. The algorithms here
aimed to discover nodes that play a critical or "central" role in the dynamic processes
within a network. Centrality varies according to the network being analyzed. Within a
network that contains a single community, the node with the most connections (a "core"
node) may be considered to be most central. In contrast, analysis of a network with
multiple communities may conclude that the central node is the one which connects the
most communities (a "bridge" node). Therefore, the notion of centrality depends on the
problem domain.

* Copyright © 2017 by the Consortium for Computing Sciences in Colleges. Permission to copy
without fee all or part of this material is granted provided that the copies are not made or
distributed for direct commercial advantage, the CCSC copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires a
fee and/or specific permission.

31

JCSC 33, 3 (January 2018)

Background

The first algorithm, Betweenness Centrality (BC) [1], finds critical nodes by
calculating the "betweenness" of each node. The betweenness of a node is calculated by
finding the shortest path from every node in a network to every other node in that network
and counting how many times the shortest paths used the node in question. The node with
the highest betweenness is the most critical node in the network. This algorithm excels
at identifying nodes that serve as bridges between communities; although a bridge node
may not have the highest number of connections overall, BC identifies it as the most
critical because it is used in the shortest path from every node in one community to every
node in another.

The second algorithm, Eigenvalue Centrality (EC) [2], returns the node with the
most change in eigenvalue computation upon its removal from the graph. It is
asymptotically slower than BC and DIL because eigenvalue calculations are O(n^3) with
respect to the network size n.

EC views the graph as an adjacency matrix. An adjacency matrix translates nodes
as rows and columns and encodes node interactions as binary values, where a pairwise
connection is denoted as a one and its absence as a zero. This adjacency matrix can be
converted to coefficients in a set of equations, after which eigenvalues are computed to
determine the most important solution for those equations. For each node, an adjusted
adjacency matrix is generated to exclude that node by replacing it with zeros. Whichever
node produced the greatest change in eigenvalue estimation had the most impact on the
set of equations, establishing said node as critical.

The equation in Fig. 1 describes this process, where c is the number of communities,
γ is the eigenvalue, k is the current node index, and Pk is the approximate eigenvalue
centrality:

Fig 1. Eigenvalue Centrality Formula

Finally, Degree and Line Importance (DIL) [3] is a ranking method that finds the
most important node by considering the degree of each node and the importance of its
edges. These factors allow the method to distinguish between nodes of the same degree
as well as identifying a bridge node when present. The equation in Fig. 2 finds the
importance of each node (Lvi) while the equation in Fig. 3 describes how to find the node's
contribution to its edge (Wvi vj).

Fig 2. DIL Node Importance Formula Fig 3. DIL Node Contribution Formula

The importance of each node (Lvi) is calculated by adding the degree of that node
and the sum of the node's contribution to its edges. The node's contribution (Wvi vj) to

32

CCSC: Eastern Conference

edge importance is based on its degree relative to the node it is connected to. The
importance of the edge (Iej) is determined by the degrees of the nodes that it connects.
Therefore, an edge with significant importance will connect nodes with high degrees,
thereby having a higher influence on connectivity relative to other edges in the network.
This algorithm finds the node that has the highest connectivity and the greatest impact on
the connectivity of other nodes within the network.

Project Goals

Our objective was to implement and analyze serial and parallel solutions for the
three approaches discussed above in order to evaluate and compare centrality detection
accuracy as well as performance based on execution times. Accuracy is defined here as
the implementation's ability to find either of the critical nodes (the "core" node or
"bridge" node).

METHODOLOGY

The implementations are parallelized by adding OpenMP's parallel "for" pragma (a
code annotation) on the for loop that does the calculations for each node. This pragma
divides the node calculations between multiple threads. The "critical" pragma is also
added to prevent race conditions when comparing the current and max values for
replacement if necessary. We use the IGraph library to store and manipulate the graphs
and adjacency matrices and to perform betweenness and eigenvalue calculations.

To test accuracy, we used these three datasets: Zachary's Karate Club [4], Dolphins'
Social Network [5], and Les Misérables Network [6]. We used Zachary's Karate Club as
the first case because it is clear which nodes are important. Fig. 4 [7] represents the graph.
The two important nodes that the implementations should find are node 0 (the instructor
of the karate club) and node 33 (the president). The graph represents the patterns of
friendship between people in the club. The next dataset encodes frequent associations
between 62 dolphins in a community located in New Zealand. There are 159 edges total
in the dataset. Lastly, we used the Les Misérables Network, containing characters from
Victor Hugo's novel. Each node is a character and an edge between two nodes means that
those two characters appeared in the same chapter together. There are 254 edges total.

Betweenness and eigenvalue centrality have been studied extensively, including
Batool's and Niazi's research of validating centrality measures [8]. We thus evaluated the
accuracy of our implementations by comparing with their results. Due to the lack of
ground truth for degree and line importance, we evaluated our implementation on its
agreement with the other two methods as well as by manual examination of the graph.

We tested performance using the Les Misérables Network and two additional
datasets: Facebook Social Network [9] and Scientific Collaboration Network [10]. The
Facebook Social Network consists of 347 nodes and 5038 edges collected from Facebook
data. Lastly, the Scientific Collaboration Network portrays a real-life network of
scientists who collaborated together on network theory and experiment, compiled by
Mark Newman with a total of 1589 nodes and 2742 edges.

33

JCSC 33, 3 (January 2018)

RESULTS
Accuracy Tests

For Zachary's Karate Club, EC
outputs node 33 (president) while BC
and DIL output node 0 (karate
instructor). EC identifies the
president as having the highest
eigenvalue, the person most
connected with the other connected
members in the club. Compared
against Batool's and Niazi's research
[8], our implementations produce the
correct result for this dataset. Because
a "bridge" node is explicitly present
for this dataset, DIL identifies the
karate instructor as the most
important despite having fewer
connections (lower degree value) than
the president. As the "bridge" node, the instructor is the path of information between the
other members.

For the Dolphins' Social Network, EC and DIL identify node 14 (Grin) as being the
most important, while BC identifies node 36 (SN100). Fig. 5 [8] shows Grin (middle
node) having the highest eigenvalue while Fig. 6 [8] shows SN100 having the highest
betweenness. DIL identifies node 14 (Grin) as most important because it is the node with
the highest degree. Since the network is composed of only one community, the "bridge"
node (which according to BC is SN100) is not found.

 Fig 5. Eigenvalue Centrality Fig 6. Betweenness Centrality

Fig.4. Graph of Karate Club Network

34

CCSC: Eastern Conference

The Les Misérables network
has multiple communities, as seen
in Fig. 7 [11]. Each community is
represented in a different color.
EC identifies node 48 (Gavroche)
as the most critical while BC and
DIL identify node 11 (Valjean).
Valjean has the most connections
in the graph and Gavroche has the
second highest. Although
Gavroche has a lower degree
value, EC identifies it as important
because it has more "influential"
connections in the graph as a
whole. BC and DIL identify
Valjean because he is the clearly
defined "bridge" node. He is the
one who connects other
unacquainted characters in the
n o v e l . F i n d i n g s f r o m
Alvarez-Soccoro's research on eigencentrality [12] further confirmed the correctness of
our BC and EC implementations.

Performance Tests

Figures 8-10 show execution times of Les Misérables, Facebook Social Network,
and Scientific Collaboration datasets in our scaling experiments.

Fig 8. Les Misérables Network Execution Fig 9. Facebook Social Network Times
Times Graph Graph

Fig 7. Graph of Les Misérables Network

35

JCSC 33, 3 (January 2018)

Fig 10. Scientific Collaboration Network Execution Times Graph

EC shows strong scaling when run with the Les Misérables network, which means
that execution time decreases as the number of threads used to run the program increases.
However, it does not exhibit the same property when run with other datasets. It is also
considerably slower overall compared to BC and DIL due to the computational
complexity of calculating the eigenvalues; the algorithm's overall time complexity is
O(n4) where n is the number of nodes in the network. We have not included EC in the
scaling graphs for the last two datasets due to its long execution times.

BC shows strong scaling consistently across all three datasets. Compared to the
results from the Facebook Social Network (Fig. 9), BC runs slower with the Scientific
Collaboration Network (Fig. 10) because the latter dataset has more nodes and
betweenness calculations have a time complexity of O(n*e), where n is the number of
nodes in the graph and e is the number of edges. Because these calculations must be done
for every node, the algorithm has an overall time complexity of O(n2*e). However, the
algorithm parallelizes well because the betweenness calculations are independent and
work can be balanced equally among the threads.

DIL runs faster than BC over all three datasets because it uses local information
instead of global to calculate each node's importance. It only needs the degrees of the
current node and its neighbors. Thus, DIL has an overall time complexity of O(n*d),
where n is the number of nodes in the graph and d is the maximum degree of any node.
Unlike BC, there are no pairwise node calculations. When parallelized, DIL showed very
little scaling, meaning the increased number of threads have little to no impact on
execution time. Due to the simplicity of the calculations, the creation and destruction of
threads negates the benefits of parallelization.

36

CCSC: Eastern Conference

CONCLUSION

Of the three algorithms we studied, DIL provided superior performance and is able
to identify critical nodes even in networks where the number of distinct communities is
unknown. However, this approach is not helpful when you want to always identify a
specific type of centrality ("core" or "bridge") regardless of the community structure.
Comparatively, BC is more consistent in finding "bridge" nodes in multiple communities,
and EC finds the "core" node. EC also demonstrated the slowest execution times and
produced a non-critical node when run with the large Scientific Collaboration Network.
Thus, EC should only be used for small, single-community networks.

These results demonstrate that our implementations are able to capture the different
notions of centrality depending on the algorithm, and at least one of our implementations
(BC) demonstrates excellent strong scaling. Future work could include further
optimization as well as development of new hybrid network analysis algorithms
combining the strengths of multiple existing algorithms.

REFERENCES

 [1] Girvan, M. and Newman, M.E., Community structure in social and biological
networks, Proceedings of the national academy of sciences, 99 (12), 7821-7826,
2002.

[2] Wang, Y., Di, Z. and Fan, Y., Identifying and characterizing nodes important to
community structure using the spectrum of the graph, PloS one, 6 (11), e27418,
2011.

[3] Liu, J., Xiong, Q., Shi, W., Shi, X. and Wang, K., Evaluating the importance of
nodes in complex networks, Physica A: Statistical Mechanics and its
Applications, 452, 09-219, 2016.

[4] Zachary, W.W., An information flow model for conflict and fission in small
groups, Journal of Anthropological Research, 33, 452-473, 1977.

[5] Lusseau D., Schneider K., et.al., Behavioral Ecology and Sociobiology 54,
396-405, 2003.

[6] Knuth D. E., The Stanford GraphBase: A Platform for Combinatorial
Computing, Addison-Wesley, Reading, MA, 1993.

[7] Understanding Networks, Log 3: Importing Networking Data, 2010
https://understandingnetworks.wordpress.com, retrieved April 27, 2017.

[8] Batool, K. and Niazi, M.A., Towards a methodology for validation of centrality
measures in complex networks. PloS one, 9 (4), e90283, 2014.

[9] McAuley J. and Leskovec J., Learning to Discover Social Circles in Ego
Networks. NIPS, 2012

[10] Newman M. E.J., Phys. Rev. E 74, 036104, 2006.

37

JCSC 33, 3 (January 2018)

[11] Ren, X., L06 Discussion: Visualization, Les Mis Network Graph, 2015,
https://rstudio-pubs-static.s3.amazonaws.com/115658_4bb31c520bab4389bf0f8b
dab6b27d36.html, retrieved April 27, 2017.

[12] Alvarez-Socorro A.J., Herrera-Almarza G.C., González-Díaz L.A.,
Eigencentrality based on dissimilarity measures reveals central nodes in complex
networks. Scientific Reports, 5, 17095, 2015

38

