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Abstract 
This report summarizes the activities and major accomplishments of the Variable Precision 
Computing Strategic Initiative project.  The overarching goal of this project was to initiate and 
promote a new paradigm in High Performance Computing (HPC) that would fundamentally change 
how we represent and make use of representations of real numbers in finite precision and that 
would establish Lawrence Livermore National Laboratory (LLNL) as a leader in precision-related 
research for HPC.  We pursued three integrated and concurrent research thrusts: new, more 
dynamic data representations to address data motion and capacity limitations; improved mixed 
precision algorithms to accelerate computation and to leverage new hardware; and new tools to help 
developers reason about precision and to automate code transformations.  Within these thrust areas, 
we made significant advances in the use of compressed array data types in numerical calculations, in 
the theoretical justification, in improved performance, and in the prospects of hardware 
implementation; in the development of metrics to significantly reduce the storage needs of 
molecular dynamics simulations; in the development and analysis of efficient mixed-precision 
algorithms for time-dependent partial differential equations and for orthogonal factorization; and in 
the capability of tools that can analyze sensitivity of computed results to choices in precision and 
that can make automated code transformations based on such analysis.  We established that there 
are definite opportunities to realize significant improvements in HPC above and beyond the 2x 
limits of traditional mixed precision using the technologies we have developed. The project 
produced numerous papers, presentations, and posters in important venues as well as open-source 
software contributions to the community, and many of the new capabilities have initiated or are 
being leveraged in ongoing projects. 
 
Background and Research Objectives 
Within a computer, real numbers are represented using a finite number of 0’s and 1’s, i.e., finite 
precision, which means there are a finite number of exactly representable numbers depending on the 
number of bits used.  Decades ago, when memory was a scarce resource, computational scientists 
routinely worked in 32-bit (single) precision and were more sophisticated dealing with the pitfalls of 
finite-precision arithmetic.  Today, we routinely compute and store results in 64-bit (double) 
precision by default, even when very few significant digits are required of a calculation.  More 
precision is often used as a simple guard against corruption from finite-precision roundoff error 
instead of making the effort to ensure algorithms are robust to roundoff.  In other applications, only 
isolated calculations, like tangential intersections, require extended precision. 
 
As indicated in Figure 1, many of the 64 bits represent errors – truncation, iteration, and roundoff – 
instead of useful information about the solution.  This over-allocation of resources wastes power, 
bandwidth, storage, and Floating-Point Operations Per Second (FLOPS): many meaningless bits are 
stored, communicated, and computed.  Today, we are at a crossroads where increases in compute 
power based on traditional technologies are dwindling due to physical limits, so to continue to 
increase performance, we need to reconsider inefficiencies in our approaches.  Indeed, many 



physical simulation codes obtain only a few percent of peak FLOPS performance because data 
motion is too slow to keep processors busy with useful work.  
 
Because of the growing disparity of FLOPS to memory bandwidth and capacity (Lucas et al. 2014), 
the rise of General-Purpose Graphics Processing Unit (GPGPU) computing, and the introduction 
of special-purpose, high-performance, low-precision hardware like NVIDIA’s Tensor Core Unit 
(NVIDIA 2019), there has been renewed interest in mixed precision computing, where tasks are 
identified that can be accomplished by using reduced precision (half or single) in conjunction with 
double precision. Such static optimizations reduce data movement and FLOPS, but their 
implementations are time consuming and difficult to maintain, particularly across computing 
platforms.  Task-based mixed-precision would be more common if there were tools to simplify 
development, maintenance, and debugging, but it inherently is limited by not being able to adapt to 
the precision needs of a calculation. 
 
We often dynamically adapt discretization parameters (mesh size and approximation order) and 
models in physics simulations to focus the greatest effort only where needed.  In the Variable 
Precision Computing (VPC) project, our ambitious goal was to do the same with precision:  to 
develop technologies that would allow simulations to adjust dynamically precision at a per-bit level 
depending on the needs of the task at hand.  Just as adaptive mesh refinement (AMR) adapts spatial 
grid resolution to the underlying solution, our system can locally provide more or less precision as 
needed.  An overarching goal was to establish Lawrence Livermore National Laboratory (LLNL) in 
a leadership role in what we perceived to be an important growing direction in High Performance 
Computing (HPC) research.   
 
Acceptance from the community necessitates that we address three concerns: that we can ensure 
accuracy, ensure efficiency, and ensure ease of use in development, in debugging, and in application.  
To achieve our vision, we pursued three integrated and concurrent thrusts that pulled together 
recent advances from multiple areas: new, efficient data representations to address the data motion 
and storage problems; improved mixed precision algorithms to reduce unnecessary computation and 
to leverage specialized hardware; and new tools to help developers reason about precision and 
automate data type transformations.  Underlying these thrusts was a significant effort in numerical 
analysis to provide the necessary theoretical justification for our work.  Our expectation was that 
VPC would allow for 4-100x less data storage and would increase computational throughput by 
factors of 2-10x for bandwidth-limited applications. 
 
Specifically, our original intent was to consider a breadth of high-level research objectives.  Building 
on the ZFP compressed floating point array representation developed at LLNL, we sought to 
couple this format with a hierarchical multiresolution data format to provide a “data optimal” 
representation that could refine or coarsen mesh resolution and precision as needed to minimize 
data under an error budget for visualization and data analysis purposes.  We also planned to develop 
a rigorous analysis of the roundoff error accumulation for calculations in which the underlying data 
was represented in the ZFP compressed array format and to extend the ZFP representation to be 
locally adaptive to further increase the effective gains in data reduction.  To reduce computation, we 
sought to extend the error transport approach for a posteriori error estimation from truncation error 
to roundoff error estimation and to consider combining it with a local, patch-based approach related 
to AMR. Furthermore, we sought to investigate the utility of reduced (mixed) precision algorithms 
for eigensolver problems frequent in molecular dynamics and graph clustering and to demonstrate 
these algorithms on a new ARM/GPU cluster to be procured by Livermore Computing (LC).  On 



the tools front, our major research objective was to use compiler-based, source-to-source 
transformation techniques to develop tools to automatically convert types consistently in codes to 
ease the burden of software maintainability of switching types or developing mixed precision 
implementations.  Throughout the project, we sought to demonstrate our techniques on LLNL-
relevant application codes, with a splash app of demonstrating the adaptive ZFP capability in the 
radiation transport code Ardra.  
 
We successfully completed the majority of these objectives, even as the scope and direction of the 
research naturally evolved.  Notably, we did not complete a demonstration of mixed precision 
algorithms on an ARM/GPU cluster nor did we fully complete a demonstration of ZFP compressed 
arrays on the full Ardra application problem, both of which were end goals of lengthy research 
paths.  In both cases, aligning tasks to expertise within the team proved to be a limiting factor, in 
addition to the unexpected challenges that arise in any research project.  However, in addition to the 
original objectives, we pursued promising new research directions as they arose.  We produced 
additional analyses of (and corrections for) the bias in ZFP lossy compression, demonstrated linear 
equivalence of error transport with iterative refinement and identified additional opportunities for 
parallelization, and extended traditional roundoff error analysis methods to account for mixed 
precision.  In our pursuit of efficient means of reducing data from unstructured particle methods, we 
investigated a number of reordering techniques in ZFP as well as the concept of channel capacity as 
a metric for decimation of molecular dynamics simulation data.  Our work on tools also grew to 
accommodate algorithmic differentiation techniques to identify candidate variables for lower 
precision, and ultimately, we developed a more sophisticated analysis tool chain than originally 
planned. 
 
Scientific Approach and Accomplishments 
Within each of the three thrusts of our project (new data representations, improved mixed precision 
algorithms, and enabling tools), there were multiple research threads.  We here summarize the 
approaches and accomplishments of each major effort within the thrusts. 

New Data Representations 
One thrust of our project dealt with new, more efficient ways of representing data.  For data 
analysis, we investigated data optimal representations that could locally adapt both the precision of 
the data and/or the granularity of the underlying grid based on the needs of the analysis.  We 
investigated the ZFP compressed data array theoretically, bounding the lossy-compression errors 
and approximation bias; in hardware, developing a logic gate layout suitable for FPGA use; and in 
practice in a LLNL-relevant transport algorithm.   We also developed an adaptive form of ZFP, 
Adaptive Rate Compression (ARC), which is even more efficient in its ability to adjust storage needs 
for specified levels of accuracy. We formulated a universal coding of the reals, a superset of real 
number representations including the IEEE (Institute of Electrical and Electronics Engineers) 754 
floating-point standard and implemented these generic types in software so that they can be 
evaluated in application codes.  Finally, for problems with little data coherence like particle methods, 
we used ideas from information theory to develop metrics that can be used to accelerate calculations 
and significantly reduce data storage needs.   
 
Data Optimal Representations for Analysis 
Traditionally, there are two, somewhat orthogonal, strategies to reduce data sizes: reducing the 
resolution (subsampling or adaptive representations) or reducing the precision (quantization or 



compression). Working with colleagues at the University of Utah, we combined the two approaches 
to create a new paradigm of data reduction, where application-specific heuristics can be used to 
choose between discarding the least-important data value (i.e., reduce resolution) or discarding the 
least-important bits from a set of less-important values (i.e., reduce precision) (Hoang et al. 2018). 
We developed a new resolution-precision-adaptive, in-memory data representation that can ingest 
these arbitrary bit orderings to provide an interface to existing tools and algorithms: Mixed-Precision 
Adaptive Multilinear Meshes (MAMMs), which use multilinear B-spline wavelets to create a spatially 
adaptive mesh of rectangular cells and which represents function values on this mesh using spatially 
coherent blocks of reduced precision in increments of bytes (Bhatia et al. 2019). Combined, these 
two features enable resolution-precision adaptivity for scientific data. 
 
MAMMs is the first data structure to support ingesting arbitrary data streams, and it provides 
superior spatial adaptivity and ensures C0 continuity without explicit representation of T-junctions. 
We demonstrated that resolution-precision streams perform better than resolution-only and 
precision-only streams and that streams tailored to the specific applications outperform generic 
resolution-precision streams.  The improved adaptivity using MAMMs can provide more than a 2x 
reduction in the memory footprint of scientific data and can be easily interfaced with existing tools, 
such as VisIt. 
 
ZFP as a Compressed Data Type 
An obvious approach to address the challenges of data motion and capacity is to consider data 
compression techniques that reduce the amount of data and, thus, time in data transfer. Lossless 
compression algorithms struggle to produce significant compression ratios for floating-point data, 
but lossy floating-point compression produces a much higher ratio of data reduction. However, as 
lossy compression techniques fundamentally introduce error, in order to be widely adopted, 
theoretical justification is needed to ensure that the reconstruction of the compressed data retain 
sufficient accuracy for the intended purposes.  While prior investigations into the use of lossy 
compression techniques for scientific were limited to input and output, a critical departure in our 
work was to promote the use of ZFP compressed arrays as an alternative data type to be used to 
store simulation data in situ, that is, to store the data in a lossy compressed state, convert 
(decompress) small blocks of the data into double precision, operate on the data, and then apply 
lossy compression to store the results.  The solution state already contains truncation, iteration, and 
other roundoff errors, so as long as error from these compressed types is bounded and below other 
errors, there is no change in the meaningful digits of accuracy.  
 
We were able to provide the first closed form expression of the error caused by ZFP by considering 
a generalization in the space of infinite dimensional bit vectors – a novel approach to such an error 
analysis (Diffenderfer et al. 2019).  Our methodology can be generalized to any other algorithm 
involving the manipulation of bits, which could have a vast impact on future of floating-point 
round-off analysis. We used these techniques to identify the sufficient requirements of advancement 
operators to ensure that error accumulation caused by the repeated application of ZFP is provably 
bounded and also developed forward and backward error analysis to provide requirements on the 
fixed precision parameter, an input into the ZFP algorithm (Fox et al. 2019).  A concern that arose 
for simulations of chaotic phenomena, e.g., climate, was that the ZFP compressed data type did not 
introduce a systematic bias through repeated application.  We proved rigorously that ZFP did indeed 
possess a bias and were able to modify the compression algorithm to significantly reduce the bias. 
 



ZFP in Hardware 
The promise of ZFP compressed data types is currently limited by their implementation in software; 
performance gains are limited to the spare compute cycles available before reaching the bandwidth 
limitations of the communication channel. A hardware implementation of ZFP has the potential to 
raise the bar on performance, and from the inception of ZFP, it was designed to accommodate a 
hardware implementation (Lindstrom 2014). Ideally, ZFP could be supported in hardware at the 
processor cache so that data are moved and stored compressed and only decompressed for 
processing.   
 
As a proof of concept, we developed a hardware implementation of the ZFP compression algorithm 
in SystemC to facilitate its evaluation in various architectures. In this implementation, which 
supports 1D, 2D and 3D blocks of floating-point numbers, the best performance is realized from 
the hardware ZFP unit when batches of blocks are processed at a time; see Figure 2. The SystemC 
ZFP implementation can target an FPGA or be added to a new chip design.  Latency for the current 
implementation can be as low as 34 cycles in the 1D case and up to 172 cycles in the 3D case, which 
translates to a speedup of the hardware implementation over the software from about 15x (1D) case 
to over 200x (3D).  With these speed-ups, the additional computational cost of ZFP 
(de)compression in hardware would be an insignificant overhead, unleashing a larger percentage of 
the true processing power of modern architectures.  
 
Adaptive Rate Compression (ARC) 
We have shown that, depending on the application, numerical data can be reduced by 4-100x with 
acceptable error using the ZFP “lossy” compression.  One drawback of ZFP compressed arrays is 
that they allocate the same number of bits uniformly over the computational domain, both in space 
and in time, resulting in an excess in accuracy in easy-to-compression regions and insufficient 
accuracy in regions that do not compress as well but where accuracy is often most needed. Our goal 
was to represent the whole domain at uniform accuracy (or precision) while still taking advantage of 
compression.  By spatially and temporally adapting the compression ratio to meet a prescribed error 
tolerance, bits could be allocated more intelligently, ultimately ensuring higher accuracy in quantities 
of interest for the same storage budget. 
 
We developed a new ZFP-based data structure, called ARC (Adaptive-Rate Compression), that 
provides orders-of-magnitude higher accuracy than either ZFP or IEEE standard types in numerical 
computations for the same storage or, alternatively, less storage for the same accuracy.  Our ARC 
data structure has been carefully designed to store only the minimum amount of information needed 
to locate variable-sized compressed blocks.  The outcome of this effort is a new variable-rate 
compressed-array data structure that transparently handles memory management associated with 
block allocation, bookkeeping, and (de)compression and caching of blocks.  We have developed a 
complete implementation of adaptive-rate compressed arrays that supports ZFP's fixed-precision 
mode (controlling local relative error); its fixed-accuracy mode (bounding absolute error); and its 
reversible mode (lossless compression).  ARC has been evaluated in a volumetric raytracing 
application as well as in the Euler2D shock physics code.  As shown in Figure 3, we demonstrated 
orders-of-magnitude reductions in error for a given storage size, which, alternatively, can translate 
into effective compression rates larger than 4x.  



 
ZFP Demonstration in a Transport Code 
ZFP and ARC are currently being evaluated within Kripke, a mini-App designed to emulate the 
discrete ordinate discretization in the Ardra transport code that serves as a model for the core 
algorithms and data structures inherent to deterministic transport models.  The splash application 
for the ZFP compressed data structure work was originally envisioned to be a specific Ardra 
calculation.  While we did not reach this goal, we did make significant progress in Kripke as a step to 
implementation in the more complex Ardra code.   
 
For the Kripke effort, our primary goal was to examine the impact of compression on accuracy of 
the solution with a secondary goal of evaluating the effort required to integrate ZFP in Kripke as a 
surrogate for a modern HPC code. Our approach involved replacing Kripke's primary data arrays 
with LLNL's ZFP compressed floating point arrays, which was accomplished by altering Kripke's 
Field structures as well as some of the underlying RAJA infrastructure.  Our implementation was 
then tested against Kripke's uncompressed results.  A variety of parametric studies investigating the 
compression rate, ZFP cache size, and test problem type allowed us to extract the performance data 
needed to assess the impact of fixed-rate compression on Kripke.   
 
For problems without scattering, essentially a test of a single “sweep” in the algorithm, the 
underlying discretization errors dominate the overall error at compression rates above 4 bits/value.  
For example, on a problem with 2.88 billion zones and 32 directions, a compression rate of 8 
bits/value used only 16% of the memory required by the uncompressed code yet had error norms 
matching the uncompressed model to several significant digits. For problems with scattering, the 
results are the same: compression rates of 4 bits/value and above match the solution norms of the 
uncompressed problem to many significant figures. 
 
Universal Coding of the Reals 
While IEEE floating point has served us well for decades, theoretical analysis and experimental 
evidence point to several drawbacks.  Novel number representations beyond IEEE, like Gustafson's 
posits (Gustafson 2017), promise a better tradeoff between precision and dynamic range that may 
allow many computations to be performed at lower precision, reducing memory footprint, data 
movement, and power usage. We sought to investigate new number representations that are simpler 
to encode and decode than IEEE, that are better tuned to the empirical distribution of values that 
occur in HPC codes, that support variable precision by gradually extending both the dynamic range 
and precision at single-bit granularity, and that allow encoding of any real number given sufficient 
precision. 
 
To empirically understand the trade-offs of numerous choices in LLNL-relevant applications, we 
developed two independent frameworks.  Our NumRep framework supports fast, variable-length 
encoding of exponents, which allows trading exponent and mantissa bits to both maintain dynamic 
range and to expand precision of common numbers.  NumRep also supports user-defined fraction 
maps that translate mantissa bits to real fractions and rules for overflow, underflow, and rounding.  
Our other framework, Flex, supports more general number systems by expressing numbers via 
binary subdivision rules of intervals (Lindstrom 2019), allowing number systems – including all 
systems investigated on this project – to be defined in only two lines of code.  Our Flex library is 
more powerful than NumRep, but also less performant.  Since our experimental number types are 
not supported in hardware or natively by the compiler, a C++ wrapper library for floating-point 



operations was developed using template metaprogramming to supply new floating-point types and 
to perform operations on those types. In addition, the templates have been instrumented to capture 
operations and gather statistics on floating-point applications compiled with the library. 
 
Our frameworks unify several known but seemingly unrelated representations under a single 
schema, including IEEE floating point and posits (Lindstrom et al. 2018).  The NumRep 
framework, in particular, allows for independent experimentation with exponent codes, fraction 
mappings, reciprocal closure, rounding modes, handling of under- and overflow, and underlying 
precision.  One discovery was that, by generalizing the Elias universal codes for positive integers 
(Elias 1975) to the whole real number line, the Elias gamma code coincides with one member of the 
posit family. Through application to various linear algebra and shock hydrodynamics application 
(Figure 4), we demonstrated that number representations with variable-length exponents 
consistently outperform those with fixed-length-exponent representations.  Representations like 
posits and Elias codes generally have greater arithmetic closure, smaller mean representation error, 
more efficient representation of infinity and NaNs (Not a Number) and produce lower roundoff 
error – often by at least an order of magnitude – than IEEE types. 
 
Identifying Information in Data 
Most compression techniques rely on underlying coherence in data to reduce the amount of data 
stored.  In some sense, coherence (smoothness) serves as a measure of the local information content 
of the data.  Some data, such as particle information, generally lacks coherence – at least in low-
dimensional spaces – and other measures are needed to quantify the local information content.  
Being able to compress or reduce particle simulation data to only that of highest information 
content would be revolutionary: Molecular dynamics (MD) simulations, e.g., currently can produce 
several Terabytes to Exabytes of data per run. However, in many of these data files, there is little of 
interest; nothing of significance is contained therein until a rare event occurs.  If the occurrence of a 
rare event could be identified and then only output the most important data from an MD 
simulation, orders of magnitude of data savings would occur.   
 
Using ideas from Information Theory, we developed techniques that can enable much better data 
handling in MD simulations.  The on-the-fly detection of the rare events has been addressed by 
creating new mathematical models capable of measuring the Shannon-Hartley channel capacity of a 
classical Hamiltonian system of the kind simulated with classical MD.  This measure also allows us 
to partition the simulated system in interesting regions to be stored and uninteresting regions to be 
discarded (classification) and to define classes of relevance based on the amount of precision needed 
to save the state of each particle.  We have also investigated techniques to adjust time stepping in 
such a way that more time resolution is used in interesting regions, while uninteresting regions are 
calculated less often, resulting in performance increases.  The detection capabilities have been 
implemented as part of the input script for the MD simulation software, LAMMPS (Large-scale 
Atomic/Molecular Massively Parallel Simulator), which is widely used at LLNL, and the time step 
adjustment based on channel capacity has been implemented in the position and velocity update 
routine of LAMMPS/Kokkos and is currently work in progress. 

Improved mixed precision algorithms  
While addressing the data transfer and storage problems was the major emphasis of our research, we 
also investigated methods that could increase efficiency in arithmetic computations by using a 
combination of low and high precision variables.  Specifically, we investigated error transport as a 



bootstrapping technique to obtain higher precision from a sequence of low precision calculations.  
In addition, because of the potential speed-ups using low-precision orthogonal factorization 
methods in data analysis techniques, we investigated low- and mixed-precision variants of the 
ubiquitous QR factorization algorithm. 
 
Error Transport 
Because of specialized low-precision hardware appearing in HPC systems, there is increasing interest 
in using low-precision calculations as part of a larger mixed-precision algorithm.  The canonical 
example in this area is the classical defect correction algorithm of iterative refinement, where 
corrections are computed in low precision and iteratively added to a double precision accumulator 
until double-precision accuracy is obtained.  We were interested in an alternative defect correction 
method, error transport, which has proven to be useful for a posteriori truncation error estimation 
(Zhang et al. 2000, Qin and Shih 2003, Banks et al. 2012).  We were originally motivated by the idea 
of using local overlays of data array, in a scheme similar to block structured adaptive mesh 
refinement, to build up sufficient accuracy in hyperbolic problems.  What we ultimately discovered is 
that the error transport approach has a significant potential as an unrolled – and thus parallelizable – 
version of iterative refinement.  
  
Error transport is a form of defect correction in which the defect is used to drive an evolution 
equation for the error. The accumulated error field may then be used to correct the solution at the 
end of the simulation.  We were able to prove that, in the linear case, error transport is equivalent to 
iterative refinement, where each error correction corresponds to an iteration in iterative refinement.  
Thus, error transport provides a means to extend iterative refinement to explicit, time-dependent 
problems, to extend iterative refinement to a nonlinear formulation, and, most importantly, to 
expose a layer of concurrency that could further accelerate iterative refinement.  Since each error 
correction update can be lagged in time, error transport allows the iterations of iterative refinement 
to be pipelined and solved concurrently, providing additional speed-up without loss of accuracy.  We 
demonstrated the roundoff error transport strategy on the linear heat equation and the nonlinear 
porous medium equation.  Our preliminary results indicate a 40% speedup over the native double-
precision solver using a system of two transport equations discretized in single precision and solved 
in parallel. 
 
Low-precision Orthogonal Factorization 
Orthogonal factorization of a set of vectors is a basic linear algebraic computational kernel used 
throughout science and data analysis applications. It is used as a subroutine for many linear algebraic 
solver algorithms (e.g., iterative singular value and eigensolvers) or for analyzing statistical 
correlations in data (e.g., principal component analysis).  However, in many data analysis 
applications, the accuracy of the orthogonality is not required to perform the analysis task with high 
accuracy; low-precision arithmetic can produce useful results. For example, we have demonstrated 
the use of low precision for a class of spectral graph clustering applications that use approximate 
eigenvectors to embed graph vertices into a low-dimensional space.   
 
We developed and analyzed low- and mixed-precision QR factorization routines, which take a 
matrix of column vectors A and compute a nearly orthogonal matrix Q and upper-triangular matrix 
R such that A»Q•R. We developed a custom, low-precision Modified-Gram-Schmidt QR Algorithm 
and modified a Tall and Skinny Householder QR (TSQR) algorithm from the literature to 
accommodate low and mixed precision; testing and analysis narrowed our interest to the more 



robust, pre-existing technique TSQR.  A significant contribution of our work was to generalize the 
analysis techniques from (Higham 2002) to accommodate mixed precision.  With these new 
techniques, we performed in-depth analysis of mixed precision TSQR for general floating-point 
formats (Yang et al. 2019).  Several experiments on manufactured problems with controllable 
condition numbers and on spectral clustering and dynamic systems revealed that TSQR often can 
increase accuracy in low-precision arithmetic over Householder QR (HQR), or other non-blocked 
methods, due to using lower dimensional inner-products.  We derived worst-case bounds for 
accuracy of mixed-precision HQR and TSQR and used these to characterize when TSQR should be 
used over the traditional HQR.  Finally, we demonstrated that low and mixed precision is often 
successful in two data analysis applications: spectral graph clustering and discovering governing 
equations in dynamic systems.   

New tools to reason about and automate precision transformations 
Refactoring codes to include new data representations or to make use of mixed-precision algorithms 
entails a level of effort that serves as a barrier for adoption.  To aid developers, we have developed 
tools that can provide helpful information about algorithmic sensitivity to precision choices 
(ADAPT) and that can automate the process of type conversion while ensuring consistency with 
dependencies (Typeforge).  In combination with one of our academic collaborators, we have 
developed a tool chain (FloatSmith) that can perform an automated precision sensitivity analysis on 
source code and provide transformed, mixed-precision code that provides improved performance. 
 
Typeforge 
Modern computer architectures support multiple levels of precision when performing floating point 
arithmetic operations, and different choices have a wide impact on performance as operation 
latency, memory footprint, and communications increase. Thus, there is increasing interest in 
developing mixed-precision applications from the existing high-precision versions. In this case, 
applications are refactored to use lower precision when it does not harm the accuracy.  
 
Reducing the precision in large application is time consuming with complex behaviors and many 
possible changes. Typeforge automates the process of changing types at the source-level, performing 
any of these changes on the source code without human intervention. Typeforge is a source-to-
source tool based on the ROSE Compiler (Quinlan and Liao 2011) that detects any potential 
changes and analyzes how these changes interact with each other. For example, when one changes 
the precision of an array, one must also change the code use to allocate that array. We developed a 
new algorithm to determine the set of all changes necessary when the type of one C/C++ language 
construct is changed. Our algorithm automatically computes clusters of such changes.  The 
Typeforge clustering ability became essential when we transitioned from HPC benchmarks to the 
LLNL proxy-app LULESH.  A type change on a single variable can cause a cascade of changes to 
other variables' types to obtain a correct program. In LULESH, Typeforge found 755 possible 
changes, but consolidated the search space to 394 consistent clusters of changes.  The large number 
of changes that may be required to achieve mixed-precision shows why it is not practical to refactor 
manually. 
 
ADAPT 
Developers must take care to ensure that the roundoff errors introduced in mixed precision 
implementations are within the acceptable thresholds so as not to corrupt the output. Large errors 
can render results useless.  Unfortunately, it is not always easy to develop mixed-precision versions 



of large codes manually, as this requires both knowledge of the numerical behavior of the algorithm 
and also an understanding of the subtle details of floating-point rounding errors.  
 
We proposed an approach, implemented in a tool called ADAPT (Algorithmic Differentiation 
Applied to Precision Tuning), that uses algorithmic differentiation, a method for numerically 
computing the derivative of computer programs, to analyze floating-point precision sensitivity of 
outputs to variables and operations in a program. The results can then be used to inform the 
development of a mixed-precision version of the program. Our technique enables the scaling of 
rigorous precision analysis techniques to benchmarks and proxy applications, which is an important 
step toward the application of mixed-precision analysis to full-scale HPC applications.  
 
We compared ADAPT to state-of-the-art approaches on several benchmarks and mini-applications; 
our evaluation showed that ADAPT is able to estimate the output error of mixed-precision 
programs accurately and significantly faster than other existing tools.  ADAPT has a key capability to 
estimate the output error for every dynamic instance of the variable, which allows it to find temporal 
and spatial regions that can be represented in lower precision. This insight was used in HPCCG 
(HPC Conjugate Gradient), a Mantevo benchmark, where the code was modified to use higher 
precision in the initial iterates and then switch to lower precision arithmetic in the later iterations to 
achieve 1.1x speedup without losing any accuracy.  Detailed analysis provided by ADAPT was used 
to transform LULESH, which resulted in 20% speedup without loss of accuracy; ADAPT 
performed significantly better compared to other state-of-the-art mixed-precision tools that can be 
evaluated on LULESH (Menon et al. 2018). 
 
FloatSmith 
The goal of the FloatSmith toolchain was to provide an open-source, automated, end-to-end source-
level mixed-precision tuner that leverages that capabilities of several software tools into an integrated 
tool chain.  The toolchain consists of CRAFT (Configurable Runtime Analysis for Floating-point 
Tuning), developed at James Madison University; Typeforge; and ADAPT.  CRAFT is general 
framework for floating-point program analysis that supports several search strategies including 
combinational, compositional, and delta-debugging. We leveraged the existing testing-based search 
framework of CRAFT to implement source-level tuning.  
 
Figure 5 shows an overview of the integrated tool chain. We use Typeforge to extract a list of 
tunable variables (along with clusters or groups based on static type dependency analysis) and, 
optionally, to insert ADAPT instrumentation. If ADAPT is used, the user must also insert some 
pragma-based annotations to describe the program outputs and allowed error thresholds. The 
ADAPT-instrumented program runs and produces a mixed-precision recommendation that is 
guaranteed not to exceed the user-provided error threshold; however, it might not speed up the 
program. Finally, CRAFT performs a variable configuration space search (optionally starting from 
the ADAPT results or the Typeforge variable clusters/groups) and attempts to find a mixed-
precision configuration that both passes a user-defined representative workload and verification 
routine and achieves a speedup. If such a configuration is found, CRAFT reports the fastest and 
provides the modified source code. Each configuration is built using Typeforge, and the search 
process can parallelize naturally if multiple cores or nodes are available. 
 
FloatSmith was applied to several benchmarks. The toolchain was able automatically identify a 
mixed-precision configuration that gives 80% speedup for the vector-vector add-multiply 



benchmark AXPY.  FloatSmith was also able to fully automate mixed-precision tuning of the LLNL 
proxy app LULESH. However, the automatic tool chain gave only a 2% speedup for a one-digit 
error threshold (cf. 20% speedup for 9-digits with ADAPT).  We plan to improve FloatSmith to 
support more sophisticated transformations that would enable larger speedups.  
 
Impact on Mission  
HPC permeates how the Laboratory meets its missions, so technologies that fundamentally change 
the way we compute can have wide-ranging impacts.  In this way, the VPC Project has directly 
advanced the core competencies in High-Performance Computing, Simulation, and Data Science 
which will benefit of all five mission focus areas and of many of the Laboratory’s other core 
competencies. Because of the ground-breaking work in new data representations and the 
mathematical theory to support their use, capacity- and bandwidth-limited physical simulations, 
which include many of the mesh-based and low-order codes at the laboratory, are well-situated to 
benefit.  For calculations not in this regime, the abilities to easily maintain and understand error 
propagation in mixed-precision code and incorporate mixed-rate compression into data analysis, 
I/O, and tabular data will still provide significant benefits. More importantly, as demonstrated by the 
numerous publications and invited talks, the variable precision capabilities developed in this project 
have firmly established LLNL as the leader in this new paradigm of computing right at a time when 
the HPC community and vendors are taking a serious look at how we represent and use data (e.g., 
Intel’s new bfloat16 type). In fact, two members of the VPC team were invited to organize a 
workshop in May 2020 on variable precision computing at the Institute for Computational and 
Experimental Research in Mathematics (ICERM). 
 
The VPC project has also enriched the Laboratory’s research environment. While maintaining a 
strong collaboration with the University of Utah, we forged a new alliance with Prof. Michael Lam’s 
research group at James Madison University.  Over the course of the project, we hired two new 
postdoctoral researchers and partially supported two others; three of these have already become full 
staff members in the Center for Applied Scientific Computing, and the expectation is that the third 
will as well.  The project also mentored a dozen summer students, some for multiple internships; 
one of these has since been hired as a postdoctoral researcher, and a postdoctoral position is being 
offered to a second. 

Conclusion 
The VPC Project was very successful in demonstrating the opportunities for rethinking how we 
represent and compute with finite precision, but, as with all good research projects, there is still 
more to do.  Technically, there are more improvements that can be made to MAMMs, ZFP, and 
ARC as well as to our theoretical analyses.  Our capabilities and initial investigation into the 
universal encoding of reals have only scratched the surface of understanding the potential trade-offs 
of different encodings.  The power of using channel capacity metrics to help guide precision 
adaptivity needs further investigation.  Typeforge can be further generalized to handle more types 
and more complex transformations, and ADAPT needs to be generalized to analyze NVIDIA’s 
CUDA language and optimized to reduce memory overhead. 

Various aspects of the VPC project will continue on under different funding.  We have acquired a 
small grant for the Department of Energy (DOE) Advance Scientific Computing Research Applied 
Mathematics Research Program to continue the theoretical analyses of compressed data types.  The 
DOE’s Exascale Computing Project and the National Nuclear Security Administration’s (NNSA) 



Advanced Simulation and Computing (ASC) Program are providing further development and 
application of ZFP and ARC; nevertheless, we are in negotiations to acquire additional funding from 
ASC to support completion of the Kripke and Ardra demonstrations.  Similarly, we are discussing 
plans with the institutional common software infrastructure project, RADIUSS, to incorporate ZFP 
into the CHAI/Umpire memory management abstraction, which would make ZFP more broadly 
available within the Laboratory. Furthermore, we are discussing with the VisIt team to understand 
how to best integrate MAMMs to their framework and make it accessible to the laboratory.  

ZFP in hardware is a work in progress. Only the encoding or compression half of ZFP is 
implemented, and decompression is future work. We intend to evaluate ZFP using LiME, our 
FPGA emulation platform, by translating SystemC into Verilog or VHDL and integrating it with our 
existing design. We have had multiple discussions with vendors about including ZFP in hardware, 
and most recently there was intense interest in providing an FPGA design that would allow a vendor 
to evaluate the technology in conjunction with their own FPGA models.   

The tools developed in the VPC Project will continue to be supported and used in future work.  
Typeforge provides a capability that is essential for LLNL’s code modernization effort as it supports 
old and modern C++, including the RAJA loop abstraction interface, and will be available in the 
ROSE Toolkit. Typeforge’s internal representation of type opens new opportunities for semantic 
code analysis.  ADAPT will be extended for other kinds of approximate computing techniques; a 
new LDRD-ER was funded to pursue approximate computing in HPC, and ADAPT will be used to 
identify regions of code where approximate computing techniques can be applied to HPC 
applications.   

The software artifacts of the VPC project are being provided to the HPC community for their use 
and further development as open source software.  ZFP, MAMMs, Typeforge, and ADAPT have all 
been released, and ARC, NumRep, and Flex are in the process of being released.  Our goal in 
making this software available is to encourage others to begin to investigate precision issues so that 
we can build a larger, more active community and, ultimately, more momentum for the broader 
support for and adoption of variable precision computing techniques. 

  



 
 
Figure 1: Standard 64-bit floating point binary representation. Because of approximation and 
modeling errors, only the first few bits of the fraction (mantissa) typically contain relevant 
information for many calculations. The exponent represents over 600 orders of magnitude; less than 
100 orders of magnitude are needed to represent the ratios of largest to smallest scales in the 
universe. 
 
 
 
 
 

 

Figure 2: ZFP emulated hardware implementation performance for 64-bit, 3D blocks. (Left) Scaling 
of cycles with the number of blocks, where “linear” extrapolates the cycle time for one block to 
many blocks, showing the benefit of encoding batches of blocks through the hardware pipeline. 
(Right) Cycle-accurate estimated hardware speedup at different rates compared to a single x86_64 
core, Intel i7. 
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Figure 3: Euler2D application. The truncation error (‘trunc’) associated with the spatial 
discretization is on the order of 10−2 to 10−1, which is much larger than the roundoff error. We 
compare adaptive rate compression (ARC) errors in fixed-accuracy mode using absolute error 
tolerances of {10−6, 10−9, 10−12, 10−15} with ZFP in fixed-rate mode and standard 32-bit single 
precision. The ARC rates are averages over time and include all used storage. At R = 31.7 bits/value, 
ARC achieves 2–5 orders of magnitude smaller errors than ZFP and single precision at R = 32 
bits/value storage.  

       
 
Figure 4: Shock diffraction in an L-shaped channel. (Left) Plots of density solution (top) and error 
relative to standard 64-bit double precision (bottom) are shown for three 16-bits/value 
representations with the reference solution. For a quarter of the storage, use of ZFP and ARC (fixed 
accuracy) compressed arrays produced less than 0.09% and 0.02% root mean square (RMS) relative 
error, respectively. (Right) RMS error in the density field over time for ten different 64-bit number 
types computed using NumRep type emulation. 
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Figure 5: Integrated FloatSmith system tool chain to automate mixed-precision performance tuning 
and source transformation. The diagram shows the possible interactions between the Typeforge, a 
source-to-source analysis and transformation tool; CRAFT, a framework for search-baed floating-
point program analysis; and ADAPT, a tool that uses algorithmic differentiation to analyze floating-
point precision sensitivity of outputs to variables and operations in a program.  
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Open Source Software 

• ADAPT: https://github.com/LLNL/adapt-fp 
• FloatSmith: https://github.com/crafthpc/floatsmith 
• MAMM: http://github.com/LLNL/AMM   
• Typeforge: https://github.com/rose-compiler/rose/tree/release/projects/typeforge  
• ZFP: https://github.com/LLNL/zfp  

  



Notes to the Editors 
• Figure 3 includes superscripts (10 to the -2, 10 to the -1, 10 to the -6, 10 to the -9, 10 to the -

12, 10 to the -15) 
 
 


