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ABSTRACT

Mixed-precision computing offers potential data size re-
duction and performance improvement at the cost of accu-
racy, a tradeoff that many practitioners in high-performance
computing and related fields are becoming more interested
in as workloads become increasingly communication-bound.
However, it can be difficult to build valid mixed-precision
configurations and navigate the performance/accuracy space
without the help of automated tools. We present FloatSmith,
an open-source, end-to-end source-level mixed-precision tuner
that incorporates several software tools (CRAFT, TypeForge,
and ADAPT) into an integrated tool chain.

I. INTRODUCTION

High-performance computing (HPC) applications exten-
sively use floating point arithmetic operations, so using
floating-point arithmetic operations efficiently is critical to
achieve good performance. Modern computer architectures
usually support multiple levels of precision as defined by the
IEEE standard: 32 bits (single-precision), 64 bits (double-
precision), 128 bits (quad-precision, usually implemented in
software), as well as 16 bits (half-precision, increasingly
common in accelerators). Higher precision may improve the
accuracy of simulation results, but it usually results in an
increase in application run time, energy consumption, and
memory pressure. However, not all applications require higher
precision. In order to take advantage of the performance gains
and energy savings, applications should use lower precision
when possible while maintaining the required accuracy. One
approach is called mixed-precision arithmetic, which uses
multiple levels of precision within the same application.

Manually identifying the variables that can be in lower
precision and generating a mixed-precision version of the
application is challenging. There have been many efforts to
automate this process. Various static analysis tools [1], [2]
have been proposed that use interval and affine arithmetic or
Taylor series approximations to provide rigorous bounds on
precision errors. However, they do not scale very well and
thus have been applied to only very small benchmarks. There
are also several dynamic search-based approaches [3], [4],
[5], which evaluate different mixed precision configurations
of the program to choose the best configuration that gives the
most performance gains while satisfying some error-related
criteria. The main disadvantage of these approaches is that
the state space to explore is exponential in the number of

variables, which makes these search-based approaches very
time intensive.

We propose FloatSmith, an integrated tool chain, to auto-
matically identify mixed-precision configurations that provide
the most performance gains within the specified error thresh-
old. FloatSmith is an integration of three different tools: 1)
CRAFT, a testing-based search tool, 2) TypeForge, a compiler-
based static analysis and code transformation tool, and 3)
ADAPT, an instrumentation-based automatic differentiation
tool for mixed precision error analysis. FloatSmith produces
a source-level mixed precision version of the program, en-
abling programmers to analyze the required mixed-precision
changes and also makes it easy to maintain different code
versions. Our tool combines search-based dynamic approaches
with compiler-based static analysis techniques and rigorous
precision analysis to speed up the dynamic search process.

II. METHODS

FloatSmith integrates analysis and transformation tools into
a tool chain of three tools to achieve mixed precision through
source-to-source transformations:

1) Configurable Runtime Analysis for Floating-point Tun-
ing (CRAFT1) [6], [3], [7] provides a general framework
for floating-point program analysis. We leveraged the
existing testing-based search framework to implement
source-level tuning.

2) TypeForge is a tool that uses the ROSE compiler frame-
work2 to perform type substitution and code instru-
mentation on source code. It can change the types of
variables, data members, and aggregate type variables.
We use the type conversion to convert variables to lower
precision, and we use the instrumentation capability to
insert ADAPT function calls. We also use TypeForge to
generate compiler-based type dependency information to
(optionally) narrow the CRAFT search space to groups
of variables that must be converted together.

3) Algorithmic Differentiation Applied to Precision Tuning
(ADAPT3) [8] is a wrapper for the CoDiPack library for
algorithmic differentiation [9] that adds floating-point
precision tuning analysis. We use ADAPT to (optionally)
narrow the CRAFT search space to variables that can be
replaced according to the differentiation results.

1http://github.com/crafthpc/craft
2http://www.rosecompiler.org
3http://github.com/LLNL/adapt-fp



Figure 1 shows an overview of the integrated tool chain. We
use TypeForge to extract a list of tunable variables (along with
clusters or groups based on static type dependency analysis
described below) and optionally to insert ADAPT instrumen-
tation. If ADAPT is used, the user must also insert some
pragma-based annotations to describe the program outputs and
allowed error thresholds. The ADAPT-instrumented program
runs and produces a mixed-precision recommendation that is
guaranteed not to exceed the user-provided error threshold;
however, it might not speed up the program.

Finally, CRAFT performs a variable configuration space
search (optionally starting from the ADAPT results or the
TypeForge variable clusters/groups) and attempts to find a
mixed-precision configuration that both passes a user-defined
representative workload and verification routine and achieves
a speedup. If such a configuration is found, CRAFT reports
the fastest one and provides the modified source code. Each
configuration is built using TypeForge for type conversion, and
the search process can parallelize naturally if multiple cores
or nodes are available.

Currently, our framework only fully supports applications
compatible with C++11, but that is due to a limitation in
an ADAPT dependency. The rest of the framework should
be compatible with any language for which there is a Rose
compiler front end.

The remainder of this section discusses changes to the
various components of our system that were required to enable
the entire tool chain. These changes not only improved each
individual tool but also enabled “more than the sum of all
parts” emergent benefits when using all components.

A. CRAFT

CRAFT [6], [3], [7] is a general framework for floating-
point program analysis with support for a variety of different
kinds of analysis. We use the mixed-precision search system,
which is implemented in Ruby and was originally designed
to find double-precision machine code instructions that could
be replaced by their single-precision equivalents. The primary
change required for the tool chain was to add the notion
of a program variable as a first-class object for tuning. We
implemented this and added a new “variable mode” activated
using a command-line switch (“-V”).

One benefit of doing the search at the variable level with
a source-to-source tool is that speedups can be verified em-
pirically by compiling and running a mixed-precision config-
uration. Previously, the instrumentation overhead involved in
building the configuration far outweighed any benefit of the
precision replacement. In addition, the compiler did not have a
chance to perform optimizations like vectorization that would
have exposed performance improvements at lower precision.
With source-level transformations neither of these problems
manifest, and CRAFT can directly search for a speedup.

Thus, we pursued two metrics for measuring the quality of a
configuration: 1) the total number of variables replaced (which
is a metric that was used previously for instructions) and 2)
the actual speedup achieved by the configuration.

A secondary change to CRAFT was the addition of several
new search strategies. Because variables do not have as deep of
a structural hierarchy as instructions (“function → variable”
rather than “module → function → basic block → instruc-
tion”), the old hierarchical strategy was less useful. Thus, we
added (or updated) new search strategies:

1) Combinational - This is a brute-force strategy that
simply tries all potential combinations of variables. This
strategy is not viable for more than a few variables
because it will test 2n − 1 configurations given n
variables (it does not need to try the configuration where
zero variables are replaced). However, it is useful for
establishing a baseline for comparison and for finding
a global maximum replacement count and speedup for
small numbers of variables.

2) Compositional - This strategy tries replacing every
variable individually and then attempts to build better
configurations using compositions of already-passing
configurations. It does this by taking every passing
configuration with k replacements and building new
configurations by merging with previously-passing k-
cardinality and 1-cardinality configurations (see Algo-
rithm 1). This approach will generally find the global
maximum replacement count and speedup, but it is
not guaranteed to do so. However, it also does not
necessarily try all possible combinations. In practice,
it avoids areas of the search space dominated by non-
replaceable variables and provides results that are some-
times globally optimal.

3) Delta debugging - This strategy is based on the algo-
rithm described in the original Precimonious paper [4]
and used for comparison in other recent work [10],
[11]. It uses a binary search on the list of program
variables and examines an asymptotically smaller space
than either of the other approaches. However, it is
also not guaranteed to find global maxima for either
replacement count or speedup.

4) Hierarchical-compositional - This strategy uses struc-
tural hierarchy information (i.e., code modules and
functions) to do a breadth-first search for individual
components that can be entirely replaced with single-
precision variables in isolation. This search is similar to
the original CRAFT hierarchical search. Then, after re-
placements are found, they are combined using the com-
positional search strategy to find larger replacements,
with the exception that only k-cardinality configurations
are considered for merging.

Finally, CRAFT was also improved by adding support
for grouping variables by type-dependency labels emitted by
TypeForge and adding the ability to run configurations using
a job scheduler for better parallelism across a cluster.

B. TypeForge

TypeForge is a tool to facilitate various type refactoring
operations. It provides a set of primitive transformations
affecting the base-type of various elements of code. These
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Fig. 1. Integrated system tool chain overview

Data: R: set of all possible individual replacements
Result: P : set of passing configurations
Q = {{r} | r ∈ R}
P = ∅
while Q 6= ∅ do

c = choose(Q)
Q = Q− {c}
if test(c) then

Q = Q ∪ {c ∪ p | p ∈ P, c ∩ p = ∅, (|p| =
|c|) ∨ (|p| = 1)}

P = P ∪ {c}
end

end
Algorithm 1: Compositional search

elements include the types of variables, function parameters,
and function return types. In addition, a function’s call site can
be transformed to handle template functions where the return
type depends on a template argument.

TypeForge recognizes native compound types such as
“const double”, “double *”, and “double[3]” as
well as instantiated containers from the C++ Standard
Template Library (STL) such as “std::vector<double
const &> const &”. When replacing “double” by
“float”, the four examples above respectively be-
come: “const float”, “float *”, “float[3]”, and
“std::vector<float const &> const &”. Because
of the flexible nature of the construction of types in ROSE, we
can handle any composition of native types such as “float
* const * x[10]”.

In FloatSmith, TypeForge is used for three tasks: (a) re-
place/change the base type of all floating-point variables,
function parameters, or function return-type with ADAPT’s
differentiable type “AD_real”, (b) list all variables, function
parameters, or function return-type whose type is based on
“double” but could be changed to “float”, and (c) re-
place/change base type of selected variables, function parame-

ters, or function return-type by “float”. TypeForge performs
these tasks using its three main capabilities: (1) enumerating
possible transformations, (2) clustering dependent transforma-
tions, and (3) generating source code with transformed base
types.

1 double a0 [ 8 ] ;
2 double a1 [ 8 ] ;
3 double ∗ p t r = a0 ;
4 ∗ p t r = 2 . ;
5 p t r = a1 + 4 ;

Listing 1. Example of dependent type changes. Line 3: typeof(ptr) must
be compatible with typeof(a0). Line 5: typeof(ptr) must be compatible with
typeof(a1).

ADAPT’s transformation (a) is performed only using ca-
pabilities (1) and (3) because all transformations are applied
together. For the search phase with CRAFT we also use the
clustering capability (2), because the task (b) that lists all
variables, function parameters, and function return-types that
can be changed yields a large number of potential transforma-
tions; however, some transformations can yield incorrect code
if applied by themselves. For example, Listing 1 demonstrates
a situation where changing the base type of any of three
variables (a0, a1, or ptr) requires that all three variables
must be changed. Our clustering method (2) solves this issue
by grouping together transformations depending on each other.
This leads to a reduction of the size of the search space,
sometimes by a factor of two (see the LULESH results in
Table III).

1 s t r u c t Domain {
2 s t d : : v e c t o r<double> v ;
3
4 Domain ( ) : v (N, 0 . ) {}
5
6 double & g e t ( i n t i ) {
7 re turn v [ i ] ;
8 }
9

10 void e x t r a c t ( i n t o f f , i n t n , double ∗ p ) {
11 f o r ( i n t i = o f f ; i < o f f + n ; ++ i ) {
12 ∗ ( p + i ) = v [ i ] ;
13 }
14 }



15 } ;
16
17 i n t main ( ) {
18 Domain D(2∗N ) ;
19 double R ;
20
21 f o r ( i n t i = 0 ; i < 2∗N; ++ i ) {
22 double & v = D. g e t ( i ) ;
23 R += v ;
24 }
25
26 double ∗ a r r = a l l o c <double >(N ) ;
27 D. e x t r a c t ( 3 , N, a r r ) ;
28
29 re turn 0 ;
30 }

Listing 2. Demonstrating code features found in LULESH. Line 2, 7, &
12: Vector from the STL is used to store floating-point values. Line 6 & 22:
Accessor returns reference to floating-point values. Line 10 & 27: Pointer to
floating-point values passed to a function. Line 26: Call to templated function
where the return type depends on the template argument.

Fig. 2. In this graph, the nodes corresponds to objects that can be transformed
by TypeForge (Table I) while the edges correspond to the dependencies
(Table II). Each node shows the unique name of the object and its original
type. The edges are annotated with the line that introduces the corresponding
dependency. Nodes are colored depending on their respective clusters.

TypeForge works directly on ROSE’s Abstract Syntax Tree
(AST). It proceeds in the following steps:

1) TypeForge identifies objects in the AST for which it
can apply type transformations. In Table I, we show the
list of objects for Listing 2. While we can change the
type of variables, parameters, and function return-types,
we also had to permit call-site transformations. This
was driven by the templated functions where the return-
type depends on the template parameters (for instance,
LULESH allocates floating-point arrays this way).

2) Objects are filtered based on their types. Only objects
whose base type is float or double can be trans-
formed (such as: float const *, double &, or
std::vector<double const *>). In Table I, the
type of selected nodes is shown in bold.

3) All expressions in the application are analyzed looking
for type dependencies. In Table II, we describe the
dependencies introduced by the expressions in Listing 2.

4) The potential transformations and the dependencies be-
tween them form a directed graph. We use a standard
clustering algorithm to group together transformations
that depend on each other. Figure 2 shows the graph
generated for Listing 2 and the clusters are reported in
the last column of Table I.

C. ADAPT

ADAPT [8] uses algorithmic differentiation to estimate the
error that would be introduced by changing each variable’s
type. Algorithmic differentiation (AD) uses the chain rule
of differentiation to evaluate numerically the derivative of a
computer program. ADAPT uses derivatives obtained from AD
in conjunction with the first-order Taylor series approximation
to construct a model that would estimate the error introduced
as a result of the change in precision of variables. ADAPT
uses the error model to perform a greedy allocation and
recommends variables that should be replaced to maximize the
amount of conversions under a provided total error threshold.
The AD analysis is done by a header-only wrapper around the
CoDiPack [12] library, which uses C++ expression templates
to record computation and calculate derivatives for a given
program.

Originally, the ADAPT instrumentation was inserted man-
ually: the developer had to replace all floating-point variables
with a differentiable type (AD_real) and insert some other
calls to provide information about execution to the ADAPT
library. With the integration of TypeForge, much of this
process is now automated, except for marking the beginning
and end of the computation of interest as well as indicating
which variables should be considered outputs along with their
allowable error threshold. Listing 3 shows an example of what
these annotations look like.

1 i n t main ( )
2 {
3 Domain D;
4 double R ;
5 i n i t i a l i z e d a t a (&D ) ;
6 # pragma a d a p t b e g i n
7 R = p e r f o r m c o m p u t a t i o n (&D ) ;
8 # pragma a d a p t o u t p u t R 1e−8
9 # pragma a d a p t end

10 re turn 0 ;
11 }

Listing 3. Sample ADAPT instrumentation (lines 6, 8, and 9).

Additionally, the ADAPT analysis originally could not
guarantee a speedup because it only considered whether a
replacement was valid according to the error criteria. However,
the ADAPT output is now used during the CRAFT search to
narrow the search space (usually by restricting the search to
ADAPT-recommended variables, or by using the ADAPT error
to sort the variables before searching), and the mixed-precision
configurations are actually tested in order to determine auto-
matically whether any of them yield a speedup.

The ADAPT tool required relatively few changes for the
tool chain project. The only significant new features added
were support for the new JSON output format (see section



Object Line Kind Type Cluster
::Domain::v 2 field class ::std::vector<double> #1
::Domain::Domain() 4 return type N/A
::Domain::get(int) 6 return type double & #1
::Domain::get(int)::i 6 local var. int
::Domain::extract(int,int,double*) 10 return type void
::Domain::extract(int,int,double*)::off 10 parameter int
::Domain::extract(int,int,double*)::n 10 parameter int
::Domain::extract(int,int,double*)::p 10 parameter double * #2
::Domain::extract(int,int,double*)::0::i 11 local var. int
::main() 17 return type void
::main()::D 18 local var. class ::Domain
::main()::R 19 local var. double #3
::main()::2::i 21 local var. int
::main()::2::v 22 local var. double & #1
::main()::arr 26 local var. double * #2
EXPR[alloc<double>(N)] 26 call expression double * #2

Table I. This table shows all objects detected by TypeForge when analyzing the code from Listing 2. There are three categories of objects: variables (local,
global, field, or function parameter), return-type (method or function), and call-expression. Objects with types based on double are candidates for

transformation. Selected transformations can require each other leading to independent clusters of transformations.

Line Code Effect
7 return v[i] base type of the return type of ::Domain::get must be same as the base type of ::Domain::v
12 *(p+i) = v[i] no-effect: value assignment
22 v = D.get(i) the base type of ::main::2::v must be same as base type of the return type of ::Domain::get
23 R += v no-effect: value accumulation
26 arr = alloc<double>(N) type of ::main::arr depends on the call-expression, meaning that it depends on the template argument
27 D.extract(3, N, arr) base type of ::Domain::extract::p must be the same as the base type of ::main::arr

Table II. This table details the effects of the expressions in Listing 2. In many cases, expressions are evaluating scalar values which are assigned to scalar
variables, written at an address, or stored through references. In these cases, the expression does not imply dependencies between the type of the objects

(because floating point scalar are cast-compatible). Dependencies arise in the case of pointer arithmetic and when retrieving references to variables.

below for more discussion of this) and support for multiple
dependent (output) variables.

D. FloatSmith Coordination

Finally, we developed a new software tool chain called
FloatSmith that provides an interactive interface for running
the various pieces of the entire system without requiring the
user to be an expert in using any of them. This tool asks the
user several questions and walks them through creating the
various scripts necessary for the rest of the system. It then
runs the various pieces of the system, describing them as they
run. The actual run scripts are saved so that the user can re-run
various stages over again if they wish (or if there is a problem
that they need to fix).

For experienced users (or for repeatable experiments) we
also provide a batch mode that can be invoked with the -B
option. This accepts all default options unless overridden using
command-line parameters. In this mode, the only required
command-line parameter is the --run parameter, which spec-
ifies how to execute the program. It will assume a standard
make command can build the project and that the user wants
the output to remain identical to the original. For instance, the
AXPY example can be run from its folder in the FloatSmith
repository using the following simple command:

floatsmith -B --run "./axpy"

This level of automation is unique to our approach and
provides a remarkably low barrier-to-entry, especially with the
container image that we also provide to avoid having to install

all of the prerequisite tools manually. Of course, the user will
likely wish to tweak the search based on the results (e.g.,
to be more or less strict in the verification), and we provide
several ways to do so (changing the search strategy, verifying
via regular expression or custom script, etc.).

To enable all three tools to inter-operate cleanly, we de-
signed a new JSON-based data interchange format. This
format encodes information about tunable variables, clusters of
variables, differentiation results, and mixed-precision configu-
rations. All three tools emit some form of data in this format,
and all but ADAPT also read data in this format (ADAPT
input information is embedded in source code annotations).

III. RESULTS

We have successfully applied the whole system to several
examples and benchmarks. In this section we present our
preliminary results. Extending these experiments to larger
applications and doing a comprehensive comparison with
similar tools is future work. All of these results were run
on a cluster with Intel Xeon E5-2630 CPUs and 32GB of
RAM, and all performance experiments were repeated ten
times with the minimum runtime recorded. All benchmarks
except for LULESH (which was multi-threaded with OpenMP)
were single-threaded, but the cluster nodes were used to run
multiple configurations simultaneously to reduce the overall
search time (because the search is naturally parallel).

Table III shows results comparing the various search strate-
gies described above. Clearly, the combinational approach
does not scale, and the compositional approach has a similar



AXPY SUM2PI ARCLEN DFT LULESH
Candidate variables/clusters 3 8 10 11 710 / 376
Approximate time (in seconds) to run each configuration 4 8 4 4 74
Configurations tested

Combinational 7 255 1023 2047 >1e110
Compositional 4 128 14 513 571
Delta debugging 6 26 38 42 1772
Hierarch-comp 6 14 15 68 782

Highest number of replacements
Combinational 2 7 3 8 -
Compositional 2 7 3 8 11
Delta debugging 2 7 1 5 24
Hierarch-comp 2 7 2 6 7

Best speedup
Combinational 80% - - 2% -
Compositional 80% - - 2% 2%
Delta debugging 80% - - - 2%
Hierarch-comp 80% - - - 2%

Table III. Search strategy comparison results (dashed lines generally indicate no speedup; also, LULESH was not run in combinational mode due to an
infeasible number of configurations)

FFT EP CG MG
Candidate variables 25 64 86 115
Approximate time (in seconds) to run each configuration 4 19 10 18
Configurations tested

Combinational >1e7 >1e19 >1e25 >1e34
Delta debugging 96 366 382 456

Highest number of replacements
Delta debugging 24 4 22 4

Best speedup
Delta debugging - - 4% 1%

Table IV. Mid-sized program search results (dashed lines indicate no speedup)

problem, especially when many individual variables can be re-
placed. Delta debugging is often more efficient and converges
with fewer tested configurations, but does not always find
all possible replacements. Hierarchical-compositional often
converges relatively quickly and sometimes finds more passing
configurations than delta debugging.

The first example is AXPY, a synthetic benchmark created
to demonstrate the potential benefit of mixed precision. It
does some simple vectorizable operations on two very large
arrays, one of which can be stored in single precision without
compromising the final results. As expected, all of the searches
we ran found this replacement (along with one other scalar
replacement), and the performance improvement was around
80% on our test machine. The original maximum resident set
size was 1,563,564 kbytes (1.5 GB) while the mixed-precision
maximum resident set size was 1,172,940 (1.1 GB), and page
faults dropped from 584,483 to 1,505. This search was entirely
automated; all FloatSmith had to be told was how to run the
program (see the command in the previous section).

The SUM2PI and ARCLEN examples are from CRAFT
and Precimonious, respectively, and the DFT example is a
simple discrete Fourier transform implementation used in other
prior mixed-precision work [13]. All three perform iterative
calculations where certain variables can be stored in single
precision. Again, all of our FloatSmith searches found replace-
ments in all of these examples; however, these examples do
not demonstrate a significant speedup because the conversion
does not enable any new optimizations except for a very minor

(2%) speedup in DFT.
Table IV shows results from a few other mid-sized bench-

marks. These were only run with the delta-debugging strategy
due to time constraints. The FFT benchmark is from the GNU
Scientific Library 4, and the EP, CG, and MG benchmarks
are from the NAS Parallel Benchmark suite [14]. These
benchmarks represent a significant increase in complexity, as
the number of variables rise into the dozens and the source
code is split among multiple files (the total number of lines
ranges from ≈250 for FFT to over 1,500 for MG). Again,
FloatSmith found valid mixed-precision replacements, even if
none of them result in a significant speedup on the CPU.

Finally, the LULESH benchmark [15] is a well-known De-
partment of Energy proxy application (≈6,600 lines) that has
been used to demonstrate mixed-precision results in previous
work [8], [10], with speedups of 20% or more. We tested the
OpenMP version (enabling thread-based parallelism) with -O3
optimization enabled and a problem size of 50× 50× 50. As
in another recent work [10], we check the iteration count and
final origin energy, which must match the original exactly. We
also check that the “TotalAbsDiff” metric is on the same order
(i.e., one digit of accuracy). Because of the large number of
variables, we ran our searches based on the clusters reported
by TypeForge rather than individual variables.

Unfortunately, we are not currently able to replicate the
20+% speedup found in previous work [8], [10], for the

4urlhttps://www.gnu.org/software/gsl/



w/o ADAPT w/ ADAPT
SUM2PI

Combinational 255 15
Compositional 128 8
Delta debugging 26 26
Hierarch-Comp 14 6

ARCLEN
Combinational 1023 3
Compositional 14 3
Delta debugging 38 38
Hierarch-Comp 15 1

Table V. Impact of ADAPT recommendations on SUM2PI search (total
configs tested)

following reasons. First, the result in Menon et al. [8] was
obtained using a source transformation that involved creating
multiple versions of a function and a new temporary data
structure. We are currently unable to automate this level of
sophistication in transformation. Second, the result in Laguna
et al. [10] was based on the GPU version and also worked
at the LLVM level, transforming LLVM IR and thus finding
opportunities for mixed precision that do not translate well
back to source-level transformations.

However, we do find valid configurations, and unlike the
previous approaches our technique provides a source-level
transformation automatically 5. We anticipate that in the future
more sophisticated analysis will be able to close these gaps
and replicate or improve on the speedups found by prior work.

Table V shows results demonstrating the impact of ADAPT
analysis on the search phase. If ADAPT info is present, the
combinational and compositional search strategies will use it
to narrow the field of valid candidates for replacement and
consider only those that ADAPT recommends replacing. As
the results show, this can significantly reduce the number of
configurations that must be tested. If ADAPT info is present,
the delta debugging search strategy will sort the variables by
ADAPT-reported error, potentially improving the search con-
vergence by grouping low-error variables together. However,
we did not observe this effect in our initial experiments.

IV. FUTURE WORK

A. Generalization of Results

There are limitations inherent to using a testing-based ap-
proach to find mixed-precision configurations. Our techniques
use a developer-provided testing routine to invoke potential
configurations with a representative data set and to verify
that the output has an acceptable level of accuracy. Strictly
speaking, any results could be only applicable to the given
input data set. However, in practice the results usually gen-
eralize to some extent, and this sort of dynamic analysis
is a pragmatic approach taken in many domains, including
performance optimization and software testing. The nature of
our analysis allows us to analyze whole programs on a scale
approaching HPC applications, which is generally impossible

5The output currently has formatting differences due to the way ROSE
re-emits modified code. ROSE does provide a mechanism that will allow us
re-emit the code with no or minimal formatting modifications (to diff against
the original code), and this feature will be investigated in future work.

for more conservative and rigorous approaches. In the future,
however, we hope to mitigate this limitation using various
techniques such as input fuzzing (a testing technique that
provides random or invalid data) and automatic detection of
pathological inputs.

B. Performance Prediction

Currently, the search strategy has no reliable way to deter-
mine which configuration(s) will have the best performance.
This is determined by trial-and-error. A performance model
that could accurately predict the performance of a configu-
ration without actually building and running it would make
the search converge much quicker. One possible performance
model involves detecting the number of floating-point casts
introduced by a mixed-precision configuration (similar to the
approach used by GPUMixer [10]). TypeForge already reports
static cast information, and we plan to use it to estimate the
performance impact.

C. Extension to GPUs

Speedups due to precision reduction are more significant
on accelerated platforms. With ADAPT [8], for example, the
authors found a 20% speedup on LULESH only with the GPU
version. This is because single-precision arithmetic is often
not significantly faster on CPUs; speedup must be achieved by
vectorization and reduced memory pressure. Theoretically, our
system can support tuning GPU code directly because ROSE
has been extended to include CUDA support. Unfortunately,
due to time constraints this has been relegated to future work.

D. Integration with Other Tools

We hope to be able to add more components in the future.
This could include components to improve accuracy [16],
bound error [17], perform cancellation or dynamic range
detection [6], prototype alternative representations [18], or
estimate/improve fault tolerance. Some of these (like the
differentiation analysis of ADAPT and the type dependency
analysis of TypeForge) could help narrow the search space.

E. Comparison to Related Work

There is prior work in building mixed-precision configura-
tions using software tools, including CRAFT [6], [3], [7] and
ADAPT [8], which we extended in this work to build an end-
to-end source-level tuning system. In this sense, our work is
similar to a recent effort [19] to combine other floating-point
tools, although the purpose of those tools was to optimize
accuracy in a statically-verifiable way rather than to inform
mixed-precision implementations.

Other related work in automated mixed-precision analysis
includes Precimonious [4], [20] and HiFPTuner [5], FP-
Tuner [1], Daisy [21], [2], [17], GPUMixer [10], and AMPT-
GA [11] among others (e.g., [13], [22], [23], [24], [25], [26]).
All of these prior approaches build mixed-precision versions of
a program in one way or another, but none of them provide an
end-to-end source-level tuning framework that is as automated
as our approach. A detailed comparison with these efforts is
future work.



V. CONCLUSION

We combined three program analysis components (CRAFT,
TypeForge, and ADAPT) into an end-to-end precision tuning
system called FloatSmith. We extended all three components
to enable the integration, implemented new software to co-
ordinate the components, and tested the system on several
examples and benchmarks. We demonstrated that such analysis
is feasible and applicable to small-scale HPC workloads.
We also identified several ideas for extension projects, and
anticipate that the system will serve as a foundation for many
avenues of future work.
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[23] S. Graillat, F. Jézéquel, R. Picot, F. Févotte, and B. Lathuilière,
“PROMISE: floating-point precision tuning with stochastic arithmetic,”
in 17th international symposium on Scientific Computing, Computer
Arithmetic and Verified Numerics (SCAN 2016), (UPPSALA, Sweden),
pp. 98–99, Sept. 2016.

[24] N. Ho, E. Manogaran, W. Wong, and A. Anoosheh, “Efficient floating
point precision tuning for approximate computing,” in 2017 22nd Asia
and South Pacific Design Automation Conference (ASP-DAC), pp. 63–
68, Jan 2017.

[25] R. Medhat, M. O. Lam, B. L. Rountree, B. Bonakdarpour, and S. Fis-
chmeister, “Managing the Performance/Error Tradeoff of Floating-point
Intensive Applications,” in Proceedings of the International Conference
on Embedded Software (EMSOFT’17), ACM, 2017.

[26] Y. Chatelain, E. Petit, P. de Oliveira Castro, G. Lartigue, and D. Defour,
“Automatic exploration of reduced floating-point representations in iter-
ative methods,” in Euro-Par 2019: Parallel Processing (R. Yahyapour,
ed.), (Cham), pp. 481–494, Springer International Publishing, 2019.



VI. ARTIFACT DESCRIPTION

The code for the tools described in this paper is open source
and available in the following public GitHub repositories:

• FloatSmith: github.com/crafthpc/floatsmith (GPL3)
• CRAFT: github.com/crafthpc/craft (LGPL3)
• ADAPT: github.com/LLNL/adapt-fp (GPL3)
• TypeForge: github.com/rose-compiler/rose (tag

0.9.11.95) (revised BSD)
The FloatSmith repository contains documentation on how

to install and use the entire tool chain (an automated installer
script for a known-working dependency configuration is pro-
vided). Local installation requires a Linux-based operating
system on an x86 architecture with a C/C++ compiler that
supports C++11. However, results for selected examples can
be reproduced in a hardware-agnostic container from Docker
Hub without full installation (note that it may take several
hours to rebuild these results depending on your hardware):

docker pull lam2mo/floatsmith
docker run -it lam2mo/floatsmith
./run_experiments.sh

The FloatSmith repository does not contain some ex-
amples and benchmarks, such as the NAS benchmarks
(available at https://www.nas.nasa.gov/publications/npb.html)
or LULESH (available at https://computing.llnl.gov/projects/
co-design/lulesh). The FloatSmith repository contains infor-
mation about how to rebuild and use the Docker container to
analyze arbitrary programs on a local file system.

The results in the paper were generated on a 16-node Intel
Xeon cluster running RHEL7 with GCC 4.9.3. Benchmark
versions used include NPB 3.1 and LULESH 2.0. Benchmarks
were unmodified except for adding ADAPT annotations (op-
tional) and combining the LULESH code into a single source
file for simpler analysis (also optional). No external data sets
are necessary.


