
Automating Systems Course Unit and Integration Testing
Experience Report

Dee A. B. Weikle
James Madison University

Harrisonburg, VA
weikleda@jmu.edu

Michael O. Lam
James Madison University

Harrisonburg, VA
lam2mo@jmu.edu

Michael S. Kirkpatrick
James Madison University

Harrisonburg, VA
kirkpams@jmu.edu

ABSTRACT
Introducing software testing has taken on a greater importance in
undergraduate computer science curricula in the last several years,
with many departments using JUnit or other testing frameworks
in the programming sequence and software engineering courses.
We have developed an automated framework for unit and integra-
tion testing and grading for our intermediate-level systems course
projects. Our system–designed to test C programs–combines the
Check unit testing framework, custom Bash scripts for integra-
tion testing, and the Valgrind Memcheck memory leak detection
tool. Although our courses use Linux, the framework is platform-
independent and has been tested on a variety of other platforms.

We have used this framework for seven semesters with four
different instructors as part of the computer science program at a
primarily undergraduate university with an emphasis on liberal
arts. We distribute both public and private tests so that students
get immediate feedback on their progress without knowing the
actual contents of every test. We have observed that knowing their
code is not completely working motivates more students to figure
out what they don’t understand before the project deadline. It also
gives students examples of different levels of tests to use to debug
their code, encourages them to develop a deeper understanding of
the project specification, and reduces student anxiety about grades.
ACM Reference Format:
Dee A. B. Weikle, Michael O. Lam, and Michael S. Kirkpatrick. 2019. Au-
tomating Systems Course Unit and Integration Testing: Experience Report.
In Proceedings of the 50th ACM Technical Symposium on Computer Science
Education (SIGCSE ’19), February 27-March 2, 2019, Minneapolis, MN, USA.
ACM, New York, NY, USA, 6 pages. https://doi.org/10.1145/3287324.3287502

1 INTRODUCTION
Software testing has become a fundamental skill for computer sci-
ence graduates entering the industry. Many employers expect their
new hires to be familiar with methodologies that integrate testing
and software development, such as test-driven development. Given
this increased emphasis from industry, many computer science pro-
grams have explored ways to reinforce these concepts in courses
beyond software engineering.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SIGCSE ’19, February 27-March 2, 2019, Minneapolis, MN, USA
© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-5890-3/19/02. . . $15.00
https://doi.org/10.1145/3287324.3287502

One common approach to increase students’ exposure to test-
ing practices is to bring unit testing into other domains, such as
courses on human-computer interaction [3]. JUnit provides a stan-
dard industry framework for courses that use Java [12]; additionally,
the rich features of JUnit facilitate using it for integration testing.
In other areas, instructors have created their own languages and
tools to bring unit testing to courses with C++ [2] or assembly
language [7] projects. To support our intermediate-level systems
courses, we have built a similar tool to facilitate automated testing
in C.

Our system is designed to provide support for more than just unit
testing. Specifically, our system provides an integrated framework
for several automated testing components, including unit testing,
integration testing, and dynamic analysis for memory leaks. Our
system relies on common freely available tools, including the Check
unit testing framework, the diff utility, and Valgrind’s Memcheck
memory leak detector. The framework uses Bash scripts to auto-
mate much of the processing. While our courses use Linux, the
framework is platform-independent and has been tested on macOS
and Cygwin for Windows.

Our design goals for this work go beyond just technical concerns,
as well. In our experiences, many students struggle with systems
courses for a variety of reasons. For most students, these courses
are their first introductions to the C language and its related tools;
consequently, they have no prior experience with explicit memory
management. Most have minimal exposure to navigating the Linux
command line. Furthermore, as our earlier courses are Java-based
and assume no prior knowledge, many students are reluctant to
move away from lightweight Java IDEs, such as Dr. Java or jGRASP.

By the end of the first semester in the systems sequence, our
goal is for students to be able to develop command-line systems
programs in C. Given the students’ background, achieving this goal
requires a significant amount of instructor support, both in the
form of content scaffolding and motivational guidance. To facilitate
both of these goals, our system provides students with all tests that
will be used for evaluating their work. This includes a combination
of public tests (to provide initial guidance) and private tests (pre-
compiled and stripped of debugging symbols). Keeping the source
code for the latter private is important, as many of these tests
include code that would leak details about how to implement certain
features.

A key feature of our approach is the structure of the test cases
and their relationship to student grades. We adopt a specifications
grading approach [10], in which subcomponents have a given spec-
ification that is evaluated in a pass/fail manner. The project require-
ments indicate which components are required to earn at least a
grade of C, which for at least a B, and which are required for an A.

Paper Session: Testing 2 SIGCSE '19, February 27–March 2, 2019, Minneapolis, MN, USA

565

https://doi.org/10.1145/3287324.3287502
https://doi.org/10.1145/3287324.3287502

The advantage of this transparency is that it empowers students to
monitor their progress independently.

This specifications grading approach has both cognitive and
affective benefits for students. From the cognitive perspective, the
grading structure provides scaffolding for students to learn how to
break the project down into steps. They cannot earn a C or higher
if any of the C tests fail, even if they pass several A or B tests;
consequently, the grading structure guides them from simpler to
more complex tasks. From the affective perspective, the tests serve
as proximal subgoals [1] that reinforce motivation. Passing one
test or group of tests increases the student’s expectancy that they
can pass the next, which is only slightly more complicated. And as
the C tests are intentionally easy to pass with only modest effort,
students quickly get the feedback–as they are working–that they
are in no danger of failing.

Through course evaluations and informal discussions, we have
observed anecdotal feedback that suggests students view the frame-
work as helpful. Students have indicated that seeing the immediate
feedback of their current grade status provided reassurance that
kept them focused on making gradual progress. They have also
identified the projects as being helpful preparation for exams by
creating a platform to apply theoretical concepts.

We have used this framework for seven consecutive semesters
with four different instructors leading the classes. Our department
maintains a primary focus on undergraduate education within the
context of a Master’s university with a liberal arts emphasis. The
majority of our students enter as computer science majors with
little or no prior exposure to programming. Since adopting this
testing framework in our systems curriculum, we have observed
qualitatively improved student submissions and reduced student
anxiety in these courses. In this experience report, we will describe
some of the guiding principles of our approach, outline the major
components of the system, and discuss lessons learned and tips for
instructors who may want to use the system in their own courses.

2 BACKGROUND AND MOTIVATION
The automated testing tool that we present here is part of a larger
departmental effort to redesign our systems curriculum [6]. Specif-
ically, our aim has been to adopt a learner-centered philosophy
that supports and encourages student autonomy within the con-
straints of a discipline with a rapidly growing and evolving body
of knowledge. As part of this curriculum redesign, we have created
a two-semester intermediate-level sequence that provides a foun-
dation of the core knowledge for advanced systems work. Beyond
normal cognitive learning outcomes, this two-semester sequence
also emphasizes metacognitive objectives, with the aim that stu-
dents leave these courses with the ability to use tools that are
appropriate to the systems domain for later courses.

The first semester of this sequence focuses on the structure and
execution of sequential software. These C-based projects revolve
around binary executables structured in a simplified version of ELF
(called Mini-ELF) and targeting the Y86 architecture [4]. Figure 1
shows a short description of each project, along with the specific
learning goal for this phase.

The primary goal of this tool is to automate the delivery of feed-
back, which is an essential component of learning [9]. However,

the quality and learning benefit of the feedback depends on several
characteristics relating to how it is structured and given [13]. For
instance, good feedback is goal-referenced and actionable, allowing
the student to monitor their learning progress. In addition, good
feedback is timely and user-friendly. Satisfying all of these proper-
ties is particularly challenging within the constraints of systems
work that often relies on command-line tools. As such, one design
goal of our system is to integrate the output from multiple tools
into a single summary report that informs students regarding the
tests their code passes, whether there are non-obvious concerns
(such as memory leaks), and how their work will be measured for
grading purposes. Since the students have immediate access to all
of the tests, they get this feedback immediately even though some
tests are kept private to prevent leaking implementation hints.

In addition to the intuitive goals of automating grading and feed-
back, our goals for this system are inspired by other work relating
to motivation and persistence. Specifically, grades are a form of ex-
trinsic motivation that reduces students’ ability for self-regulation
and control; as grades are perceived as either a reward or punish-
ment, the net effect on students’ intrinsic motivation is negative
and detrimental to learning [11]. To counter this effect, we strove to
structure our tests as an incremental approach based on the notion
of proximal subgoals [1]. That is, with both unit and integration
tests progressing through a series of closely related stages from sim-
ple to complex, successfully passing one test supports the students’
expectation of passing the next.

3 TESTING FRAMEWORK
The testing framework is publicly available at https://github.com/JMU-
CS/c-test-framework. The framework is designed for C99 on Linux,
intended to be used in an academic course. It uses the Check[8]
framework for unit testing, some custom Bash scripts for inte-
gration testing, and the Memcheck memory leak tool based on
Valgrind[5]. We have attempted to clean up and generalize the code
in this repository, but you may still find references to our course in
these files. When downloaded a project directory would contain all
the source files given to the student for the project. Some of these
files will be "boiler-plate" templates that students will fill in with
their solution. Included in this directory, is another directory called
tests that contains the framework that we describe below.

This framework consists of unit tests for each function executed
(in public.c and private.c), along with integration tests (in inte-
grations.sh) that test overall output differences from running the
student solution against a reference solution using diff on a given
set of inputs. These tests form a testsuite that is then broken down
into tests that are required for a particular grade. The sections be-
low describe the unit tests, integration tests, the distribution and
grading in more detail.

3.1 Unit Tests
Figure 2 shows sample code for creating a unit test according to
the Check framework. The example here is setting up a test for a C-
language function the students are asked to write for p0 that returns
the sum of the absolute value of two numbers. This is a public test
(i.e. one for which students can see the source code) and only tests
the most straightforward case for this problem, adding two positive

Paper Session: Testing 2 SIGCSE '19, February 27–March 2, 2019, Minneapolis, MN, USA

566

Project Description Goal
p0-intro Introductory set of C functions ranging from the

absolute value add shown in this paper to more
complex file manipulation problems

Master basic C programming

p1-check Read in a Mini-ELF header and display it Write standard Linux command-line programs and reinforce
the idea that information is bits plus context

p2-load Load Mini-ELF file into memory array Reinforce the relationship between a compiled executable and the
standard Linux/C memory model

p3-disas Decode and disassemble machine code instructions Reinforce assembly code concepts and the standard components
of executable files

p4-interp Simulate execution of machine code instructions Reinforce assembly code and CPU architecture concepts, focusing on
the execution of machine code instructions

Figure 1: Five programming projects used in our introduction to systems course

START_TEST (C_addabs)
{

ck_assert_int_eq (add_abs(2,3), 5);
}
END_TEST

Figure 2: Example test case using the Check framework

START_TEST (A_sortarray)
{

const size_t N = 4;
int nums[] = { 5, 2, 11, 8 };
int ref[] = { 2, 5, 8, 11 };
sort_array(nums, N);
for (int i=0; i<N; i++) {

ck_assert_int_eq (nums[i], ref[i]);
}

}
END_TEST

Figure 3: More complex example test case using the Check
framework

numbers. The name of the test starts with "C" indicating this test
must be passed for the student to get a C grade. The test case
including negative numbers in one or more of the two operands is
a private test, also required for a C grade. Note that all of the tests
have somewhat descriptive names so even failure of the private
tests provides some feedback to students about what is wrong with
their code. As an example, the name of the private test just referred
to is C_addabs_negative_ints. Figure 3 shows a more complex
test case.

3.2 Integration Tests
Integration tests are intended to test whole-program behavior and
are written using input/output file pairs. Tests are specified in a
configuration file, which contains one line for each integration
test. The line specifies the name of the test (the output file must
match this) as well as the command line intended to evoke the
corresponding output.

int addabs (int num1, int num2)
{

// BEGIN_SOLUTION
return abs(num1) + abs(num2);
// END_SOLUTION
// BOILERPLATE: return 0;

}

Figure 4: Reference solution

int add_abs (int num1, int num2)
{

return 0;
}

Figure 5: Distribution (boilerplate) version

The actual testing is handled by a Bash script that runs the
program once per test with the specified command line and uses
the diff utility to compare the actual output to the expected output.
The script is designed to be generic enough to handle any project.

Because memory management is such an important part of cod-
ing in a low-level language, the script also runs each test in Val-
grind/Memcheck to check for memory leaks.

3.3 Distributions
Scripts are provided for building project distributions to give to
students. These scripts remove solution code and package up the
project into a tarball. For convenient testing, it also saves a snapshot
of both the distribution files and the full solution.

To mark solution code for removal, the instructor should sur-
round it with BEGIN_SOLUTION and END_SOLUTION one-line com-
ments. If the removal of the code would result in invalid code (e.g.,
no return value), a BOILERPLATE tag can provide alternative code
for the distribution. Figure 4 shows one example of a reference
function that has been marked prior to distribution, and Figure 5
shows how the same function appears in the generated file.

Paper Session: Testing 2 SIGCSE '19, February 27–March 2, 2019, Minneapolis, MN, USA

567

3.4 Grading
We also provide a sample grading script. To use this script, the
instructor must collect student submissions using a specific file
structure as described in the framework documentation. The in-
structor must also provide a configuration file with the relevant
filename and path information for the reference solution, submis-
sion folders, and results.

When the grading script is run, it copies all of the student submis-
sions into sub-folders in a temporary folder. It also copies the test
files from the reference solution to prevent students from gaming
the system by modifying the test files. It then builds and runs all
tests on all submissions. The results are printed to standard output
in a summary format, with overview test results for each student
as well as information about compiler warnings, memory leaks, or
insecure functions (e.g., gets). Figure 6 shows sample output from
this script.

All unit and integration tests are labeled with a grade level. The
lowest grade tests are the easiest to write code to solve and are
the least dependent on other functionality. Also, to pass the lowest
level tests does not require passing any of the upper level tests. The
higher grade tests may be dependent on the lower grade tests and
to get a higher grade, a student must also pass all of the lower grade
tests. For example, to get a C the student’s code must have passed all
of the F, D and C tests that are given. This structure gives an overall
road map to students of how to work on the project - starting with
the lowest grade functionality and moving upward. As they pass
each level of tests, this success gives them both confidence and a
new incremental goal to pass the next level.

3.5 Student Use
Students primarily interact with the framework through provided
Makefiles. They build their project using the default make command,
or they can run the test suite using make test. Figure 7 shows
sample output for an incomplete submission; the unit test output
is provided by the Check library and the integration test output
is from our script. Figure 8 shows sample output for a complete
submission.

We encourage students to run the integration tests themselves
outside of the test framework. The command line and input file(s)
for all integration tests are listed in a configuration file so there
is enough transparency for students to reproduce the tests. This
enables them to iterate faster once they have identified tests that
they are failing, and it enables them to run the test in an interactive
debugger.

3.6 Docker Support
The framework has been designed to be platform-independent
and has been tested on a variety of Linux platforms as well as
macOS High Sierra and Windows 10 (using Cygwin). In addition,
we provide Docker files so that the framework can be used on
non-supported platforms. The resulting Docker containers can be
used to build the project distributions, run the test suite, or start
the program in an interactive debugging session using the GNU
debugger, regardless of the host platform.

4 DISCUSSION
Below is a list of benefits we have experienced from using this
automated framework with a brief discussion of each.

• Having a built-in test suite forces students to read the
project specification more carefully.Many skim the de-
scription and don’t spend time reading and thinking about it.
Being confronted with failure when they expect success re-
inforces that they are working with a machine not a human
(“machine as other”), and even tiny differences or misunder-
standing can cause catastrophic failure. Details matter.

• Havingunit tests for the students to use increased their
motivation, and subsequently their learning. Students
come with questions before the assignment is due as they
are motivated to understand what is going wrong in order to
improve their grade. In addition, the smaller unit tests allow
them to focus on a specific goal and ask questions targeting
that goal.

• Scaffolded (grade-specific) tests give students specific,
smaller goals and a road map through a large project.
Though not always apparent to students, the thoughtful la-
beling of the tests so that they are encouraged to work on
the D tests first, then the C tests, etc. gives them a subtle road
map on how to approach the large project. This support is
then available for students who needed it without requiring
individual graded milestones. It is a good middle-ground be-
tween short-term deadlines and a long-term project without
interim support.

• Providing somebuilt-in unit and integration tests scaf-
folds students into creating their own tests. Students
seem to have very little idea of how to create test cases of
their own (and particularly integration tests) when they ar-
rive in this third semester course. Although some of this
may just be unfamiliarity with the C language, providing
example tests gives them a starting point and encourages
them to create their own.

• Having unit and integration tests encourages students
to understand the difference. Passing unit tests and then
failing integration tests seems to highlight the importance
of communicating the interface between pieces of software
clearly as well.

• The distribution of a testing framework facilitates ex-
ploration and learning beyond what we consider “nec-
essary” to pass the class. While some students will run
make test and treat it like a magic oracle for the entire
semester, other students dig in deeper to learn how it works,
and a few will even tinker and experiment with it. When a
test fails on a later project, the explorers and tinkerers have
a greater understanding of how to begin debugging. This
ends up performing as differentiated instruction based on
interest and ability. Students can learn at the pace and depth
that is appropriate for them.

• Our test-based baseline grading scheme reduces stu-
dent uncertainty about their grade. This reduction in un-
certainty reduces anxiety for most students and gives them
an indicator of where they are in addition to how much time
they will likely need to complete the project. It also allows

Paper Session: Testing 2 SIGCSE '19, February 27–March 2, 2019, Minneapolis, MN, USA

568

studentid1 C D D 25%: Checks: 20, Failures: 15, Errors: 0 Integration failures: 14 No memory leak found.
studentid2 X (no submission)
studentid3 D D D 25%: Checks: 20, Failures: 14, Errors: 1 Integration failures: 14 No memory leak found.
studentid4 F D F 20%: Checks: 20, Failures: 16, Errors: 0 Integration failures: 14 No memory leak found.
studentid5 A A A 100%: Checks: 20, Failures: 0, Errors: 0 Integration failures: 0 No memory leak found.

Figure 6: Example grading script output

==
UNIT TESTS

15%: Checks: 20, Failures: 17, Errors: 0
D_addabs:0: Assertion 'add_abs(2,3) == 5' failed [...]
C_addptr:0: Assertion 'ans == 5' failed [...]
C_factorial:0: Assertion 'factorial(1) == 1' failed [...]
C_isprime:0: Assertion '!is_prime(4)' failed
[...]
==

INTEGRATION TESTS
D_hello FAIL (see outputs/D_hello.diff for details)
C_goodbye FAIL (see outputs/C_goodbye.diff for details)
[...]
No memory leak found.
==

Figure 7: Excerpt from test run for incomplete submission
(some output omitted for brevity)

==
UNIT TESTS

100%: Checks: 20, Failures: 0, Errors: 0
==

INTEGRATION TESTS
D_hello pass
C_goodbye pass
[...]
No memory leak found.
==

Figure 8: Excerpt from test run for complete submission

the instructor to give quick feedback the day before some-
thing is due to prevent surprise zeros because of incorrect
submissions.

• Having some tests public and some private with more
detailed error messages, enables more detailed feed-
back to students. The detailed error messages let students
and faculty know where student code is failing. Faculty can
then spend more time on code inspection of individual sub-
missions for style and approach if desired.

We have also observed some potential obstacles to learning in-
troduced by our framework:

• The framework initially confuses students because they
don’t understand the output, so they often have trou-
ble getting started. To address this, we accompany the
framework with an extensive description of the framework
and spend a lot of time in office hours working with any stu-
dents who have difficulty understanding it. We also provide

an online discussion forum for students to ask questions, and
in our experience some of these questions are answered be-
fore we even see them by peers who learned the framework
more quickly. Ultimately, we feel that mastering a non-trivial
testing framework is an important experience in systems
programming.

• The framework reduces incentive for students towrite
their own tests even as it also scaffolds them into it bet-
ter.We feel a framework like this could be more appropriate
at lower-level class work (our course is a second-year sys-
tems introduction course) before we really expect students
to be able to rigorously test their own code. Future work
could include adding hidden tests that are used for grading
but aren’t distributed to students in order to encourage more
self-testing.

5 CONCLUSIONS AND FUTUREWORK
The most exciting conclusion from using this framework is the
increased motivation and engagement by the students to dig deep
and finish the projects. Anecdotal feedback from students is that
they would not have worked so hard and gotten the details right if
they had not known they did not yet have the grade they wanted.
Additional anecdotal feedback is that by the end of the course
the relationship of the project to the theoretical course content
clicks and they are able to firmly grasp the theoretical concepts
while studying for the final exam. The specification of specific
tests for attaining each grade level, allows the introduction of a
subtle road map to finish the project while avoiding the “hand-
holding” of very short term graded milestones in earlier courses. In
addition, these grade level tests introduce a mastery-model of sorts,
encouraging students with short-term achievable goals and giving
them confidence as they attempt more and more difficult pieces.
As a result, we see more students perform better in later classes in
the curriculum because they have mastered the basic material. This
has reinforced the benefit of the learner-centered redesign of the
curriculum.

In future work, we will investigate adding static analysis such as
that provided by lint to the testing framework. This would expand
the immediate feedback available to students and support them
in writing cleaner and safer code. We will also experiment with
expanding the projects to include optional parts that could differ in
rotations over semesters. In addition, changing the output and for-
matting of the tests to provide more encouragement and direction
to students is an option. An example might be, “Congratulations on
passing test X, you should consider working on test Y." Trade-offs
on autonomy vs. direction would need to be considered here, but
in some cases this encouragement could be helpful.

Paper Session: Testing 2 SIGCSE '19, February 27–March 2, 2019, Minneapolis, MN, USA

569

REFERENCES
[1] Albert Bandura and Dale H. Schunk. 1981. Cultivating Competence, Self-Efficacy,

and Intrinsic Interest Through Proximal Self-Motivation. Journal of Personality
and Social Psychology 41, 3 (September 1981), 586–598.

[2] Don Blaheta. 2015. Unci: A C++-based Unit-testing Framework for Intro
Students. In Proceedings of the 46th ACM Technical Symposium on Computer
Science Education (SIGCSE ’15). ACM, New York, NY, USA, 475–480. https:
//doi.org/10.1145/2676723.2677228

[3] Christopher Brown, Robert Pastel, Marika Seigel, Charles Wallace, and Linda Ott.
2014. Adding Unit Test Experience to a Usability Centered Project Course. In
Proceedings of the 45th ACM Technical Symposium on Computer Science Educa-
tion (SIGCSE ’14). ACM, New York, NY, USA, 259–264. https://doi.org/10.1145/
2538862.2538964

[4] Randal E. Bryant and David R. O’Hallaron. 2015. Computer Systems: A Program-
mer’s Perspective (3rd Edition). Boston.

[5] Julian Seward et al. 2017. Valgrind. http://valgrind.org/
[6] Michael S. Kirkpatrick, Mohamed Aboutabl, David Bernstein, and Sharon Sim-

mons. 2015. Backward Design: An Integrated Approach to a Systems Cur-
riculum. In Proceedings of the 46th ACM Technical Symposium on Computer
Science Education (SIGCSE ’15). ACM, New York, NY, USA, 30–35. https:
//doi.org/10.1145/2676723.2677264

[7] Zachary Kurmas. 2017. MIPSUnit: A Unit Testing Framework for MIPS Assembly.
In Proceedings of the 2017 ACM SIGCSE Technical Symposium on Computer Science
Education (SIGCSE ’17). ACM, New York, NY, USA, 351–355. https://doi.org/10.
1145/3017680.3017747

[8] Arien Malec, Branden Archer, Chris Pickett, Fredrik Hugosson, and Robert Lem-
men. 2014. Check: Unit Testing Framework for C. https://libcheck.github.io/
check/

[9] National Research Council. 2000. How People Learn: Brain, Mind, Experience,
and School: Expanded Edition. The National Academy Press, Washington, DC.
https://doi.org/10.17226/9853 Edited by John D. Bransford, Ann L. Brown, and
Rodney R. Cocking.

[10] Linda B. Nilson. 2014. Specifications Grading: Restoring Rigor, Motivating Students,
and Saving Faculty Time. Stylus Publishing, Sterling, VA.

[11] Richard M. Ryan and Edward L. Deci. 2000. Self-Determination Theory and
the Facilitation of Intrinsic Motivation, Social Development, and Well-Being.
American Psychologist 55, 1 (2000), 68–78.

[12] Michael Wick, Daniel Stevenson, and Paul Wagner. 2005. Using Testing and JUnit
Across the Curriculum. In Proceedings of the 36th SIGCSE Technical Symposium
on Computer Science Education (SIGCSE ’05). ACM, New York, NY, USA, 236–240.
https://doi.org/10.1145/1047344.1047427

[13] Grant Wiggins. 2012. Seven Keys to Effective Feedback. Educational Leadership
70, 1 (2012), 10–16. Feedback for Learning.

Paper Session: Testing 2 SIGCSE '19, February 27–March 2, 2019, Minneapolis, MN, USA

570

https://doi.org/10.1145/2676723.2677228
https://doi.org/10.1145/2676723.2677228
https://doi.org/10.1145/2538862.2538964
https://doi.org/10.1145/2538862.2538964
http://valgrind.org/
https://doi.org/10.1145/2676723.2677264
https://doi.org/10.1145/2676723.2677264
https://doi.org/10.1145/3017680.3017747
https://doi.org/10.1145/3017680.3017747
https://libcheck.github.io/check/
https://libcheck.github.io/check/
https://doi.org/10.17226/9853
https://doi.org/10.1145/1047344.1047427

	Abstract
	1 Introduction
	2 Background and Motivation
	3 Testing Framework
	3.1 Unit Tests
	3.2 Integration Tests
	3.3 Distributions
	3.4 Grading
	3.5 Student Use
	3.6 Docker Support

	4 Discussion
	5 Conclusions and Future Work
	References

