
A Successful Online Systems Class using
Scaffolded Active Learning and

Formative Assessment∗

Michael O. Lam and Dee A. B. Weikle
Computer Science

James Madison University
Harrisonburg, VA 22807
{lam2mo, weikleda}@jmu.edu

Abstract

This last year has been a challenge for faculty transitioning from in-
person instruction to online instruction. We approached the semester
with serious concerns but discovered our hybrid course transitioned well
to being completely online with a few key modifications: video versions
of all lectures, Google slide implementations of in-class labs, course pro-
cedures that allowed students to choose their breakout room in Zoom,
and randomization of question selection for midterm and final exams. In
person, this course made thoughtful use of active learning and formative
assessment to scaffold students into summative assessment. The online
version does the same and, in our opinion, this contributed to the online
success. This paper discusses the scaffolding formative assessments, how
they build to the summative module tests and midterm and final exams
as well as how we implemented active learning online. We also provide
links to the formative labs and videos that made the active learning work.

1 Background and Related Work

Here we provide a discussion of formative assessment, primarily through se-
lected work from computer science education literature because a comprehen-
sive review is outside the scope of this paper.

∗Copyright ©2021 by the Consortium for Computing Sciences in Colleges. Permission to
copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the CCSC copyright notice and the title of
the publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires
a fee and/or specific permission.

132



Formative assessment is assessment designed to facilitate student learning.
The assessment highlights student misconceptions for instructors so that they
can tailor instruction and help students to self-assess and to correct miscon-
ceptions. This correction can take place in the classroom or in some cases by
feedback to the student followed by an opportunity to retake the assessment.
In contrast, summative assessment does not provide opportunities for students
to resubmit work and is designed primarily for grading. Interested readers can
see Black [1] and Dunn [6] respectively for a more in-depth literature review of
formative assessment and a critique of the related research.

Nelson [9] provides an example formative assessment for tracing JavaScript
programs along with a discussion of Kane’s framework for assessment valid-
ity. It provides a detailed analysis of their formative assessment arguing for
its validity using the four parts of Kane’s framework: scoring, generalization,
extrapolation and use. This article is particularly useful for its discussion of
assessment design, explaining the importance of granularity in formative as-
sessment such that questions clearly identify the specific skill being assessed
and examples of confounds such as slips (misreading an operator) and guesses
that might obscure the results of such an assessment. By carefully structur-
ing their formative assessment they demonstrate the application of the validity
argument and the process of designing such an assessment. Blaheta [2] de-
scribes transforming traditional pen and paper homework assignments in an
Artificial Intelligence class into cooperative formative assessments by allowing
students to submit homework in self-selected groups, receive comments, and
resubmit for a final grade. Duarte [5] describes a blended learning environ-
ment where engineering students are given formative assessments in a learning
management system (LMS) in addition to attending class face-to-face with the
goal of improving learning outcomes and preventing premature withdrawal or
unexpected failure at the end of the course. She saw performance correlation
between the formative assessments in the LMS and final exam performance.
Cauley and McMillan [4] discuss five best practices in structuring formative
assessment: 1) provide learning targets, 2) give targeted feedback, 3) clearly
attribute successes to effort, 4) encourage self-assessment, and 5) help students
set attainable goals. Finally, Grover [7] provides an argument for formative
assessment (specifically in the K-12 context but we believe the argument is
applicable to higher education as well).

Our work is not as formal as that in Nelson, but is more of a combination
of the approaches taken by Blaheta and Duarte. We make use of four types of
formative assessment in the in-person version: 1) reading/conceptual quizzes
in our LMS (Canvas), 2) instant-feedback questions during short lectures, 3)
labs on paper that may include running or developing small programs, and 4)
larger programming assignments in C where students are able to run provided

133



unit and integration tests to make sure their code is working properly prior to
grading. In addition, we provide links to the labs via Google slides and com-
panion videos that enabled this approach to work completely online. Section
2 describes the overall structure of the course and goes into detail about the
different formative assessments.

2 Course Structure

Our course, Computer Systems I, is a basic computer architecture class com-
bined with medium- to large-sized programming projects in C along with se-
lected basic operating systems concepts. It serves as the foundation upon which
our other computer systems courses build. Figure 1 is a high-level view of the
topics covered. The course currently uses Computer Systems: A Programmer’s
Perspective by Randal E. Bryant and David R. O’Hallaron (CS:APP) [3]. The
learning outcomes are as follows:

1. Explain the machine-level representation of data and code.
2. Summarize the architecture of a computer.
3. Explain how powerful, complex systems can be built from simple logic

circuits.
4. Translate high-level code blocks into assembly and machine language
5. Write code to emulate the functionality of a computer.
6. Cultivate a sense of power and control over computer systems.
7. Gain an appreciation for the tools that facilitate software development.
8. Develop a sense of play when writing code.
9. Appreciate the principles and complexity of systems-level software.

Pre-pandemic, this course was a hybrid course designed for a 75-minute
twice-per-week meeting format. Some assessments were completed online in
Canvas, but there was a significant in-person experience. Before each in-person
class period, students were assigned a reading from CS:APP and a Canvas quiz
to complete online prior to coming to class. Each class started with a chance
for students to ask questions about the quiz followed by a mini-lecture with
instant-feedback questions. The second part of each class consisted of a lab
worksheet that students worked on in groups. In addition, there were five
programming projects, five Canvas module tests, and two in-class paper exams
(a midterm and a final). The module tests were summative timed assessments
associated with each module that students could take over a period of 2-3 days
after a module had been fully covered in class. The modules correspond to the
five high-level topics shown in Figure 1.

134



Figure 1: Computer Systems 1 Topics

2.1 Canvas Quizzes

The Canvas quizzes began as a way to make students accountable for the
reading assignments but have evolved over time to include additional questions
on basic concepts. These quizzes are formative because students see which
questions they get wrong and are allowed to review the material, ask questions
of each other or the instructor, and retake the quiz once. The quizzes make it
clear what the instructors want students to know coming in to class. As class
begins, the answers are available to students and they have the opportunity to
ask questions about any remaining confusion from the quiz.

2.2 Instant-Feedback Questions

After students read about the content for the day and take the quiz, faculty lec-
ture on the material in class, emphasizing concepts and giving examples. These
lectures include another type of formative assessment – instant-feedback ques-
tions geared toward making sure students can remember key lecture concepts
and do simple problems associated with those concepts. We used Socrative,
an online Q&A platform that allows students to enter a code and answer ques-
tions associated with an ongoing lecture. Students are given credit for simply
participating regardless of whether their answer is correct. The instructor can
see the incorrect answers and can share the distribution of answers with the
students. The instructor then gives the right answer, explaining how to get it,
and why the other answers are wrong. This is another opportunity to correct
student misconceptions in class.

135



2.3 In-class Paper Labs

Once the lecture is finished, the second part of the 75-minute class is dedicated
to doing paper labs in groups of 2-3 students. These labs may ask students to
run code on a lab machine or the student’s personal computer. Each lab is a
two-page series of questions designed to take students deeper into the mate-
rial, scaffolding them into later exams or programming assignments. During
this time, faculty monitor progress and answer student questions or point out
mistakes as they crop up. Students must each turn in their own paper by the
next day, but they are encouraged to work in groups both inside and outside of
class. With labs due the next day, students also have an opportunity to work
together more, go to open TA lab hours, or ask questions on a Q&A forum
such as Piazza. Q&A responses are shared across all sections and monitored
by both instructors. Questions can be answered by other students in the class
or by the instructors and viewed by all students. In this forum, students can
ask and answer questions showing up as anonymous to other students. With
feedback during and outside of class, the labs provide another deeper forma-
tive assessment. Labs are then loosely graded with incorrect answers marked,
but about half of the points awarded simply for turning in the assignment.
Solutions are released to show students what was expected or possible correct
answers. As with other course elements, discussion with faculty about any
remaining confusion is encouraged, but students are not allowed to redo the
labs after grading. A short description of each lab is included in Table 1.

2.4 Programming Assignments

Programming assignments for this course are described in detail by Weikle [11].
These assignments are designed to illustrate the underlying concepts while
practicing C programming. Projects include tasks such as opening a binary
file and reading in an object code header, loading object code regions into
a memory array, decoding and disassembling machine code instructions from
that code, and simulating the fetch-decode-execution cycle of machine code
instructions. We use the Y86-64 instruction set architecture from CS:APP [3]
with our own custom ELF-like object file format.

Programming assignments are released every 2-3 weeks and require students
to apply the concepts after they have been introduced in readings, class, and
labs. Students complete the programming assignments individually and are
expected to collaborate only on concepts. In addition to the specification,
students are given all the tests used to determine the functionality of their
code, some of which are private (pre-compiled and stripped of symbols) while
others are public (source code provided). These tests are organized into sets of
tests for a particular grade level in a manner inspired by specification grading.

136



All tests for a particular grade level must be passed as well as all tests for any
grade below that level to receive that particular grade. For example, to get a
D a student would only need to pass the D level tests, but to get a C, they
would have to pass all the D tests and all the C tests. Students are able to
run the whole test suite at any time in development and receive automated
feedback about their errors. This also enables them to look at the public tests
for examples of how to test their code themselves. Finally, the bundling of
tests into grade levels gives students a general guide to the most effective order
of functionality implementation (i.e., the lower grade levels are the easier tasks
to implement). In addition to the automated feedback and support, students
can visit TA lab hours and instructor office hours as well as post questions to
the previously mentioned Q&A forum.

3 Transitioning Online

The transition to a fully-online format kept the same routine with two signif-
icant modifications: 1) videos instead of lectures and 2) synchronous class in
Zoom using Google slides for labs. We provided pre-recorded videos rather
than lecture via Zoom because the videos can be downloaded and watched at
any time even with a slow connection, be slowed down or sped up at the discre-
tion of the student, and used for review or if a student missed class. One side
effect of this change is that now the entire class period could be used for active
learning using the labs, which we knew would be more difficult online. To
maximize the effectiveness of the videos we limited their length to an average
of 5-10 minutes and created playlists so students could break up their viewing
sessions (this also simplifies searching for review content later). The instant-
feedback questions were still provided in the videos with a prompt to pause
the video and answer the question, followed by a description of the answer.

Active learning is key to keeping students engaged and maximizing learning.
We found our method worked well to provide students support with technical
content as well as helping them interact with other students to make friends
and keep motivated. Prior to class, we set up a Google Doc with directions,
announcements, and a set of breakout rooms (a Zoom feature that allows one
call to have multiple isolated sub-calls; this feature is now also provided by
several other videoconferencing providers) that students could sign into when
they came to class. We also set up Google Slides with the lab questions as a
static PDF background, adding text boxes or base diagrams for students to
edit as their answers to the questions. [10]

When students entered the Zoom session (linked from Canvas), they also
opened the folder for the day that contained the sign-up sheet and the empty
lab template. Students signed up for a breakout room and then made their

137



own copy of the Google slide version of the lab. After an initial discussion
with announcements, the instructor opened the breakout rooms and students
worked together in these groups to complete the labs. Much like when students
come to class in person and tend to sit with the same group of classmates each
class period, the students in a particular breakout room were often the same,
creating friendships and strong working relationships. Instructors could then
monitor the Google slides in real time, making comments as students worked
to encourage them or help correct their thinking. Students could also ask for
an instructor to come into the breakout room to ask for help if they were
stuck or unsure. If several groups were asking for help with the same issue,
the instructor had the ability to bring everyone back to the main room, give a
quick explanation of the issues allowing for questions, and then send everyone
back to their breakout rooms.

Labs were due toward the end of the day. To turn in labs, each student had
to download their own Google slide version as a PDF file and submit to Canvas.
This allowed students to have more time if they needed and some would get
together outside of class time to complete labs or to help each other with
difficult concepts or sections. In most cases though, student could complete
the majority of the lab in class. Labs were still loosely graded by the instructor
with the majority of the credit going to turning in something. Solutions were
released after the due date similar to in-person classes. The formative aspect of
these assignments is that faculty can give feedback and guide students, noticing
misconceptions and correcting them during class just as if we were in person.

The last modification we made in the online environment was the adminis-
tration of the midterm and final exams. In person, these exams are held in the
classroom and proctored by the instructor. Online, we made these exams in
Canvas using primarily multiple choice, matching, and fill-in-the-blank ques-
tions. Our primary concern was to test similar skills online to what we have
done in person to make sure that students are prepared for the next class in
our systems curriculum. To this end, we used very similar questions or the
same questions as our previous exams. Occasionally this required us to mod-
ify the question type slightly (e.g., change draw-a-diagram to multiple-choice
with plausible distractors). A second concern was to prevent online cheating
to the extent possible. Here we chose to provide an environment that made it
convenient for students to be honest, realizing that it is impossible to prevent
dishonestly completely in an online format and preferring to avoid disadvantag-
ing honest students for whom more intrusive cheat detection would be an issue
(e.g., internet connection quality or anxiety disorders). Our first mitigation
strategy was to re-parameterize the questions from our four previous years of
exams and use the Canvas feature which will randomly pick a question from a
quiz bank for each question on an exam. When giving the exam, this makes it

138



highly unlikely that any two students will be given the same exam. In addition,
we asked students to indicate they were upholding the honor code and required
them to turn on their webcam video for a few minutes at the beginning of the
exam session, greeting them by name as they did so. These latter techniques
were motivated by the research that indicates institutional honor codes and
better faculty-student connections reduce cheating. We felt that establishing
contact right at the beginning of class reminded students of our connection in
normal class periods and reminded them that we valued them doing their own
work on the test. [8]

Our lab materials are available under the Creative Commons Attribution-
NonCommercial-ShareAlike 4.0 International License: https://bit.ly/lam-
weikle-ccsc21

4 Discussion

When initially contemplating teaching Computer Systems I online, we were
concerned we would lose more students than in a typical in-person semester.
However, our experience was that with this format our D/F/W rate was similar
and grades on individual assignments were similar if not slightly higher. There
are many reasons grades might have been slightly higher including: incremental
improvements were made to the schedule and assignments, all exams were
open book and open note online, videos could be reviewed when class was
missed, withdrawals were allowed at the very end of the semester, and we may
have graded more generously in the middle of the pandemic. However, we
also received very positive feedback on student evaluations in both the survey
comments section and via personal conversations. Anecdotally, we also saw
new relationships formed between students, and the faculty felt connected to
the majority of the students in class, similar to our prior experience in person.

We were particularly pleased with dedicating the entire class period to labs
and active learning, primarily because more students were able to complete
the labs during the class period but also because it reduced lecture prep time
during the semester. We intend to continue using these videos and add to them
for future in-person semesters so labs can make use of the entire class period.
We also found that having students submit their labs electronically as PDFs
significantly reduced the time spent grading because it is integrated with our
LMS. We plan to continue this policy in person as well, observing that high-
quality scanning apps are widely available for cell phones. Such a policy also
makes it easier to accept late work on an ad-hoc basis.

139



5 Future Work

While our course was designed thinking about formative assessment and how
each aspect of the course would build on other aspects, the transition online
has encouraged us to be even more intentional about the formative aspect.
We intend to review the Canvas quizzes and add some of the instant-feedback
questions from the lectures and possibly more directed feedback for wrong
answers. We also intend to reconsider the reading assignments in an attempt to
reduce the amount of text required and focus on the most important concepts,
in part because there is now a greater amount of time required to watch the
videos before class. Finally, we intend to consider the work in Nelson [9] with
the goal of making more rigorous arguments for the validity of our formative
assessments in future semesters.

6 Conclusion

We were pleasantly surprised by how well the transition to online teaching
went in our hybrid course built around formative assessments. Our primary
contributions in this effort include video versions of all lectures, Google slide
implementations of in-class labs, course procedures that allowed students to
choose their breakout room in Zoom, and randomization of question selection
for midterm and final exams. Informally, we found that student performance
was equivalent or possibly even better than in previous semesters with tan-
gible benefits to the instructors as well, and we plan to continue using (and
improving) this course design in the future.

References

[1] Paul Black and Dylan Wiliam. Assessment and classroom learning. As-
sessment in Education: Principles, Policy & Practice, 5(1):7–74, 1998.

[2] Don Blaheta. Reinventing homework as cooperative, formative assess-
ment. In Proceedings of the 45th ACM Technical Symposium on Computer
Science Education, SIGCSE ’14, page 301–306, New York, NY, USA, 2014.
Association for Computing Machinery.

[3] Randal E. Bryant and David R. O’Hallaron. Computer systems: A pro-
grammer’s perspective. Pearson, 2019.

[4] Kathleen M. Cauley and James H. McMillan. Formative assessment tech-
niques to support student motivation and achievement. The Clearing

140



House: A Journal of Educational Strategies, Issues and Ideas, 83(1):1–
6, 2010.

[5] Marina Duarte. Formative assessment in b-learning: Effectively monitor-
ing students learning. In Proceedings of the Second International Confer-
ence on Technological Ecosystems for Enhancing Multiculturality, TEEM
’14, page 497–501, New York, NY, USA, 2014. Association for Computing
Machinery.

[6] K. Dunn and S. W. Mulvenon. A critical review of research on formative
assessment: The limited scientific evidence of the impact of formative
assessment in education. Practical Assessment, Research and Evaluation,
14:1–11, 2009.

[7] Shuchi Grover. Toward A Framework for Formative Assessment of Con-
ceptual Learning in K-12 Computer Science Classrooms, page 31–37. As-
sociation for Computing Machinery, New York, NY, USA, 2021.

[8] Patricia A. Hutton. Understanding student cheating and what educators
can do about it. College Teaching, 54(1):171–176, 2006.

[9] Greg L. Nelson, Andrew Hu, Benjamin Xie, and Amy J. Ko. Towards
validity for a formative assessment for language-specific program tracing
skills. In Proceedings of the 19th Koli Calling International Conference on
Computing Education Research, Koli Calling ’19, New York, NY, USA,
2019. Association for Computing Machinery.

[10] Jill Staake. Google slides 101: Tips and tricks every teacher needs to
know. https://www.weareteachers.com/google-slides/, Dec 2020.

[11] Dee A. B. Weikle, Michael O. Lam, and Michael S. Kirkpatrick. Au-
tomating systems course unit and integration testing: Experience report.
In Proceedings of the 50th ACM Technical Symposium on Computer Sci-
ence Education, SIGCSE ’19, page 565–570, New York, NY, USA, 2019.
Association for Computing Machinery.

141



Table 1: Labs

Lab Number and Name Description
01-intro Introduction to a computer system
02-cmd_line Linux command line and C compilation
03-c_intro C memory model and pointers
04-arrays_strings C arrays and strings
05-structs_io C structs and I/O using fread and fgets
06-getopt_debug Command line parameter parsing and debugging
07-binary_info Binary/ hex representation and bitwise operations
08-integers Integer encodings (unsigned, 2’s compl.) and shifts
09-bin_arith, fp-intro Binary arithmetic, intro to floating point
10-floating_point Floating point representations
11-asm_intro X86-64 assembly basics
12-asm_data X86-64 data movement and arithmetic
13-asm_ctrlflow X86-64 control flow
14-asm_proc X86-64 procedures and runtime stack
15-asm_misc X86-64 data structures and floating point
16-y86 Y86-64 simplified assembly (from CS:APP)
17-cmb_circuits Combinational circuits
18-seq_circuits Sequential circuits
19-arch_pipelining Architecture and pipelining lab
20-y86_semantics Y86 semantics lab w/ CPU pipeline stages
21-memory Memory hierarchy and technologies
22-caching Caching and set associativity
23-virtual_mem Virtual memory and address translation
24-processes Exceptions and processes
25-files File systems and I/O
26-threads Threads (preview of next systems course

on concurrent computing)

142




