Software Tools for Mixed-Precision Program Analysis

Dr. Mike Lam

James Madison University Lawrence Livermore National Lab

About Me

- Ph.D in CS from University of Maryland ('07-'14)
 - Topic: Automated floating-point program analysis
 - Intern @ Lawrence Livermore National Lab (LLNL) in Summer '11
- Assistant professor at James Madison University since '14
 - Teaching: computer organization, parallel & distributed systems, compilers, and programming languages
 - Research: high-performance analysis research group (w/ Dee Weikle)
- Faculty scholar @ LLNL since Summer '16
 - Energy-efficient computing project (w/ Barry Roundtree)
 - Variable precision computing project (w/ Jeff Hittinger)

Motivation

- IEEE floating-point arithmetic
 - Ubiquitous in scientific computing
 - More bits => higher accuracy (usually)
 - Fewer bits => higher performance (usually)

Motivation

- Vector single precision 2X+ faster
 - Possibly better if memory pressure is alleviated
 - Newest GPUs use mixed precision for tensor ops

Operation	FP32	Packed FP32	FP64
Add	6	6	6
Subtract	6	6	6
Multiply	6	6	6
Divide	27	32	42
Square root	28	38	43

Instruction latencies for Intel Knights Landing

Tesla V100 PCle	Tesla V100 SXM2	
NVIDIA	A Volta	
64	40	_
5,1	20	_
7 TFLOPS	7.8 TFLOPS	FP64
14 TFLOPS	15.7 TFLOPS	FP32
112 TFLOPS	125 TFLOPS	Mixed FP16 / FP32
	Testa V100 PCte NVIDIA 64 5,1 7 TFLOPS 14 TFLOPS 112 TFLOPS	Tesla V100 PCleTesla V100 SXM2NVIDIA6405,1207 TFLOPS14 TFLOPS112 TFLOPS125 TFLOPS

Credit: https://agner.org/optimize/ and NVIDIA Tesla V100 Datasheet

Question

• How many bits do you *need*?

Prior Approaches

- Rigorous: forwards/backwards error analysis
 Requires numerical analysis expertise
- Pragmatic: "guess-and-check"
 - Requires manual code conversion effort

//double x[N], y[N];
float x[N], y[N];
double alpha;

Research Question

- What can we learn about floating-point behavior with automated analysis?
 - Specifically: can we build *mixed-precision* versions of a program automatically?
- Caveat: few (or no) formal guarantees
 - Rely on user-provided representative run (and sometimes a verification routine)

```
double sum = 0.0;
void sum2pi_x()
{
  double tmp;
  double acc;
  int i, j;
  [...]
  double sum = 0.0;
void sum2pi_x()
  {
  float tmp;
  float acc;
   int i;
   int i;
   [...]
```

FPAnalysis / CRAFT (2011)

- Dynamic binary analysis via Dyninst
- Cancellation detection
- Range (exponent) tracking

3.682236 - <u>3.682234</u> 0.000002

(6 digits cancelled)

	00		FPAnal	ysis Log Viewer						
cti	ions									
2	I									D.
4		(d)								- 1
5	a =	-exp(d);								- 1
7	/* compu	te the step to the p	ext approximati	on of x */						
8	if (d == 0.0)	iexe approximation							
9	(,								
0	go	to done;								
1	}									
2										
3	d =	(y - y0) / d;								
4										
c c	X0 =	x0 - u;								
0										_
				·						
			Messages	e estructions V	ariables)				
_			Messages Ir	structions Va	ariables)				
340)7 instructio	on(s):	Messages	nstructions Va	ariables)				
840 ID)7 instructic Address	n(s): Function	Messages Ir	Assembly	ariables	Cancels	Samples	Ratio v	AvgDigits	
840 ID 49	07 instructio Address 0x8059d45	n(s): Function pov::gamma_correct	Messages Ir	Assembly fsubrp %st0, %st1	Count	Cancels	Samples	Ratio v	AvgDigits	
840 ID 49 38	07 instructio Address 0x8059d45 0x8094375	n(s): Function pov::gamma_correct pov::determine_reflectivity	Messages Ir Source colutils.cpp:122 lighting.cpp:5706	Assembly fsubrp %st0, %st1 fsubp %st0, %st1	Count 5100 57142	Cancels 5100 57142	Samples 113 165	Ratio v 1 1	AvgDigits 65 65	
340 ID 49 38	07 instructio Address 0x8059d45 0x8094375 0x805913c	n(s): [Function pov::gamma_correct pov::determine_reflectivity pov::igami	Messages Ir Source colutils.cpp:122 lighting.cpp:5706 chi2.cpp:783	Assembly fsubrp %st0, %st1 fsubp %st0, %st1 fsubp %st0, %st1.	Count 5100 57142 204	Cancels 5100 57142 186	Samples 113 165 27	Ratio v 1 1 0.9118	AvgDigits 65 65 37.03	
340 ID 49 38 35 10	7 instructio Address 0x8059d45 0x8094375 0x805913c 0x80dd737	n(s): Function pov::gamma_correct pov::determine_reflectivity pov::send_ProgressUpdate	Messages Ir Source colutils.cpp:122 lighting.cpp:780 chi2.cpp:783 powmsend.cpp:1111	Assembly fsubrp %st0, %st1 fsubp %st0, %st1 fsubp %st0, %st1. fsubq %ss:-0x1	Count 5100 57142 204 17	Cancels 5100 57142 186 14	Samples 113 165 27 10	Ratio v 1 1 0.9118 0.8235	AvgDigits 65 65 37.03 53	
340 1D 38 35 10 3	7 instructio Address 0x8059d45 0x8094375 0x8094375 0x805913c 0x80dd737 0x8097446	n(s): Function pov::gamma_correct pov::getermine_reflectivity pov::Send_ProgressUpdate pov::Compute_Axis_Rotat	Messages Ir Source colutils.cpp:122 lighting.cpp:5706 chi2.cpp:783 povmsend.cpp:1111 matrices.cpp:977	Assembly fsubrp %st0, %st1 fsubp %st0, %st1 fsubg %st0, %st1 fsubg %st0, %st1. fsubg %st0, %st1.	Count 5100 57142 204 17 8	Cancels 5100 57142 186 14 6	Samples 113 165 27 10 6	Ratio v 1 1 0.9118 0.8235 0.75	AvgDigits 65 65 37.03 53 65	
340 1D 49 38 35 10 3 14	7 instructio Address 0x8059d45 0x8094375 0x8094375 0x809737 0x8097446 0x80f03ee	n(s): Function pov::gamma_correct pov::determine_reflectivity pov::Send_ProgressUpdate pov::Compute_Axis_Rotat pov::Compute_Plane_Min	Messages Ir Source colutils.cpp:122 lighting.cpp:5706 chi2.cpp:783 povmsend.cpp:1111 matrices.cpp:977 quadrics.cpp:1503	Assembly fsubrp %st0, %st1 fsubp %st0, %st1 fsubp %st0, %st1 fsubp %st0, %st1 fsubrp %st0, %st1 fsubrp %st0, %st1	Count 5100 57142 204 17 8 33	Cancels 5100 57142 186 14 6 24	Samples 113 165 27 10 6 11	Ratio v 1 1 0.9118 0.8235 0.75 0.7273	AvgDigits 65 65 37.03 53 65 65	
340 1D 38 35 10 3 14 41	7 instructio Address 0x8059d45 0x8094375 0x8094375 0x809737 0x8097446 0x80737 0x8097446 0x80f03ee 0x808a9fe	n(s): Function pov::gamma_correct pov::determine_reflectivity pov::Send_ProgressUpdate pov::Compute_Axis_Rotat pov::Compute_Plane_Min pov::Determine_Apparent	Messages Ir Source colutils.cpp:122 lighting.cpp:5706 chi2.cpp:783 povmsend.cpp:1111 matrices.cpp:977 quadrics.cpp:1503 lighting.cpp:646	Assembly fsubrp %st0, %st1 fsubp %st0, %st1 fsubg %st0, %st1 fsubg %ss.=0x1 fsubg %ds:0x81 fsubp %st0, %st1 fsubp %ds:0%ea	Count 5100 57142 204 17 8 33 51997	Cancels 5100 57142 186 14 6 24 34058	Samples 113 165 27 10 6 11 142	Ratio v 1 0.9118 0.8235 0.75 0.7273 0.655	AvgDigits 65 65 37.03 53 65 65 65 45.9	
340 1D 38 35 10 3 14 41 16	7 instructio Address 0x8059d45 0x8094375 0x8094375 0x805913c 0x8097446 0x80703ee 0x808a9fe 0x808a9fe	n(s): [Function pov::gamma_correct pov::determine_reflectivity pov::Send_ProgressUpdate pov::Compute_Axis_Rotat pov::Compute_Plane_Min pov::Determine_Apparent pov::Determine_Apparent	Messages Ir Source colutils.cpp:122 lighting.cpp:5706 chi2.cpp:783 povmsend.cpp:1111 matrices.cpp:977 quadrics.cpp:646 quadrics.cpp:896	Assembly fsubrp %st0, %st1 [subp %st0, %st1 [subp %st0, %st1 [subrp %st0, %st1 [subrp %st0, %st1 [subrp %st0, %st1 [subg %ds:(%ea faddp %st0, %st1	Count 5100 57142 204 17 8 33 51997 10	Cancels 5100 57142 186 14 6 24 34058 6	Samples 113 165 27 10 6 11 142 6	Ratio v 1 0.9118 0.8235 0.75 0.7273 0.655 0.6	AvgDigits 65 65 37.03 65 65 65 65 45.9 59.5	
340 1D 49 38 35 10 3 14 41 16 59	7 instruction Address 0x8059d45 0x8094375 0x8094375 0x8063913c 0x8007446 0x80703ee 0x806389fe 0x808466 0x808d4e6	n(s): [function pov::gamma_correct pov::gami pov::Send_ProgressUpdate pov::Compute_Axis_Rotat pov::Compute_Plane_Min pov::Determine_Apparent pov::Compute_Quadric_B pov::do_specular	Messages Ir Source colutils.cpp:122 lighting.cpp:5706 chi2.cpp:783 pownsend.cpp:1111 matrices.cpp:977 quadrics.cpp:1503 lighting.cpp:246 quadrics.cpp:896 lighting.cpp:2232	Assembly fsubrp %st0, %st1 fsubp %st0, %st1 fsubg %st0, %st1 fsubg %ds:0x81 fsubp %st0, %st1 fsubp %st0, %st1 fsubp %st0, %st1 fsubg %ds:0x81 fsubg %ds:0x81	Count 5100 57142 204 17 8 33 51997 10 17020	Cancels 5100 57142 186 14 6 24 34058 6 6 6967	Samples 113 165 27 10 6 11 142 6 114	Ratio v 1 1 0.9118 0.8235 0.75 0.7273 0.655 0.6 0.4093	AvgDigits 65 65 37.03 53 65 65 45.9 59.5 65	
340 1D 49 38 35 10 3 14 41 16 59 73	7 instruction Address 0x8059d45 0x8059d355 0x805913c 0x8060737 0x8097446 0x80603ee 0x808a9fe 0x808a9fe 0x808a9fe 0x808de66 0x806da15	n(s): Function pov::gamma_correct pov::determine_reflectivity pov::gami pov::Send_ProgressUpdate pov::Compute_Axis_Rotat pov::Determine_Apparent pov::Determine_Apparent pov::Compute_Quadric_B pov::do_specular pov::Intersect_Sphere	Messages Ir Source colutils.cpp:122 lighting.cpp:5706 chi2.cpp:783 pownsend.cpp:1111 matrices.cpp:977 quadrics.cpp:1503 lighting.cpp:242 guadrics.cpp:896 lighting.cpp:2232 spheres.cpp:300	Assembly fsubrp %st0, %st1 fsubp %st0, %st2 faddg %ss:-0x2	ariables Count 5100 57142 204 17 8 33 51997 10 17020 72076	Cancels 5100 57142 14 6 24 34058 6 6967 29497	Samples 113 165 27 10 6 11 142 6 114 114 137	Ratio v 1 1 0.9118 0.8235 0.75 0.7273 0.655 0.6 0.4093 0.4092	AvgDigits 65 65 37.03 53 65 65 45.9 59.5 65 44.49	

- Dynamic binary analysis via Dyninst
- Instruction-level replacement of doubles w/ floats
- Hierarchical search for valid replacements

(\varTheta 🔿 🔿	Source Viewer	- ep.f (on pygmy)
ep.f S:32 D:16 randi8.f S:2 D:7	Search:	
timers.f S:2 wtime.c S:4	185 186 if (ti 187 188 do 140 189 00 x1 190 00 x2 191 000 t1 192 0 if 193 00000 194 0 195 0 196 000 197 00 198 0 199 0 200 end 201 140 continue 203 if (ti 204 205 150 continue	<pre>mers_enabled) call timer_start(2)) i = 1, nk = 2.d0 * x(2*i-1) - 1.d0 = 2.d0 * x(2*i) - 1.d0 = x1 ** 2 + x2 ** 2 (t1 .le. 1.d0) then t2 = sqrt(-2.d0 * log(t1) / t1) t3 = (x1 * t2) t4 = (x2 * t2) l = max(abs(t3), abs(t4)) q(l) = q(l) + 1.d0 sx = sx + t3 sy = sy + t4 if ue mers_enabled) call timer_stop(2) </pre>
	•	

NAS Benchmark (name.CLASS)	Candidate Instructions	Configurations Tested	% Dynamic Replaced
bt.A	6,262	4,000	78.6
cg.A	956	255	5.6
ep.A	423	114	45.5
ft.A	426	74	0.2
lu.A	6,014	3,057	57.4
mg.A	1,393	437	36.6
sp.A	4,507	4,920	30.5

Issues

- High overhead
 - Must check and (possibly) convert operands before each instruction
- Lengthy search process
 - Search space is exponential wrt. instruction count
- Coarse-grained analysis
 - Binary decision: single or double

- Reduced-precision analysis
 - Simulate conservatively via bit-mask truncation
 - Report min output precision for each instruction
 - Finer-grained analysis and lower overhead

												-		
V	1	IOD	JLE	0x	4000	00 "	wt	ime.c"	Ρ	rec=51			[51 instructi	on(s)]
	▼		FU	NC:	0x4	00b6	0	"MAIN_	_"	Prec=5	1		[49 instru	ction(s)]
		▼		I	BBLK	: 0x	40	1088	Pre	ec=40				
						INS	N:	0x401	096	"mulsd	хттб,	xmm10	[ep.f:189]"	Prec=39
						INS	N:	0x401	09b	"mulsd	, xmm8	xmm10	[ep.f:190]"	Prec=37
						INS	N:	0x401	0a0	"subsd	xmm6,	xmm9	[ep.f:189]"	Prec=29
						INS	N :	0x401	0a5	"subsd	, xmm8	xmm9	[ep.f:190]"	Prec=27
						INS	N :	0x401	0b1	"mulsd	xmm1,	xmm6	[ep.f:191]"	Prec=25
						INS	N:	0x401	0b5	"mulsd	, xmm2	xmm8	[ep.f:191]"	Prec=26
						INS	N:	0x401	0ba	"addsd	xmm1,	xmm2	[ep.f:191]"	Prec=27
		▼		I	BBLK	: 0x	40	10f2	Pre	ec=51				
						INS	N :	0x401	106	"addsd	xmm0,	xmm0	[ep.f:193]"	Prec=25
						INS	N:	0x401	10a	"subsd	, xmm2	xmm1	[ep.f:193]"	Prec=25
						INS	N:	0x401	10e	"divsd	xmm0,	xmm2	[ep.f:193]"	Prec=25
						INS	N:	0x401	112	"sqrts	d xmm0	, xmm0	[ep.f:193]"	Prec=26
						INS	N:	0x401	136	"mulsd	хттб,	xmm0	[ep.f:194]"	Prec=27
						INS	N:	0x401	13a	"mulsd	xmm8,	xmm0	[ep.f:195]"	Prec=26
						INSI	N:	0x401	13f	"addsd	xmm7,	хттб	[ep.f:198]"	Prec=51
						INSI	N :	0x401	15d	"addsd	xmm6,	xmm8	[ep.f:199]"	Prec=51
						INS	N:	0x401	178	"addsd	xmm5,	xmm9	[ep.f:197]"	Prec=0

- Scalability via heuristic search
 - Focus on most-executed instructions
 - Analysis time vs. benefit tradeoff

Issue

- Only considers precision reduction
 - No higher precision or arbitrary-precision
 - No alternative representations
 - No dynamic tracking of error

SHVAL (2016)

Shadow value analysis

- Maintain "shadow" value for every memory location
- Execute shadow operations for all computation
- Pintool: less overhead than similar tools like Valgrind

double sum = 0.0; for (int i = 0.1;	Original	machine code:	1	Inserted shadow code:
sum += 0.1;	pxor mov	xmm0, xmm0 eax, 10	(set to 0.0)	xmm[0] = convert(0.0)
<pre>} printf("%25.20f\n", sum);</pre>	movsd loop:	xmm1, 0x400628	(load 0.1)	<pre>xmm[1] = convert(*(0x400628))</pre>
Fig. 3. Sample C program	sub addsd jne	eax, 1 xmm0, xmm1 loop	(increment)	<pre>xmm[0] += xmm[1]</pre>
	movsd	0x8(rsp), xmm0	(store sum)	mem[rsp+0x8] = xmm[0]

Fig. 4. Compiled assembly of program from Figure 3

Shadow Value Type	Exp Size	Frac Size	Final Shadow Value	Relative Error
32-bit (native single)	8	23	1.000000	1.19e-07
64-bit (native double)	11	52	1.00000000000000	0
128-bit GNU MPFR	15	112	1.0000000000000005551e+00	1.11e-16
Unum (3,2)	8	4	(0.9375, 1.1875)	0.059
Unum (3,4)	8	16	(0.9999847412109375, 1.0000457763671875)	1.53e-05
Unum (4,6)	16	64	1.0000000000000005551182	1.11e-16

SHVAL (ongoing)

- Single precision shadow values
 - Trace execution and build data flow graph
 - Color nodes by error w.r.t. original double precision values
 - Highlights high-error regions
 - Inherent scaling issues

Issue

- No source-level mixed precision
 - Difficult to translate instruction-level analysis results to source-level transformations
 - Some users might be satisfied with opaque compilerbased optimization, but most HPC users want to know what changed!

- Memory-based replacement analysis
 - Leave computation intact but round outputs
 - Aggregate instructions that modify same variable
 - Found several valid variable-level replacements

NAS Benchmark (name.CLASS)	Candidate Operands	Configurations Tested	% Executions Replaced
bt.A	2,342	300	97.0
cg.A	287	68	71.3
ep.A	236	59	37.9
ft.A	466	108	46.2
lu.A	1,742	104	99.9
mg.A	597	153	83.4
sp.A	1,525	1,094	88.9

SHVAL (2017)

- Single-vs-double shadow value analysis
 - Aggregate error by instruction or memory location over time
- Computer vision case study (Apriltags)
 - 1.7x speedup on average with only 4% error
 - 40% energy savings in embedded experiments

Fig. 1. Error trace per memory location. A darker pixel indicates higher error.

Issues

- Each instruction or variable is tested in isolation
 Union of valid replacements is often invalid
- Cannot ensure speedup
 - Instrumentation overhead
 - Added casts to convert data between regions
 - Lack of vectorization

CRAFT (ongoing)

- Variable-centric mixed precision analysis
 - Use TypeForge (an AST-level type conversion tool) for source-to-source mixed precision
- Search for best speedup
 - Run full compiler backend w/ optimizations
 - Report fastest configuration that passes verification

```
double sum = 0.0;
void sum2pi_x()
{
    double tmp;
    double acc;
    int i, j;
    [...]
    [...]
    double sum = 0.0;
void sum2pi_x()
    {
    float tmp;
    float acc;
    int i;
    int j;
    [...]
```

Related Work

- CRAFT, SHVAL, and Precimonious [Rubio'13]
 - Very practical
 - Widely-used tool frameworks (Dyninst, Pin, LLVM)
 - Few (or no) formal guarantees
 - Tested on HPC benchmarks on Linux/x86
- Daisy [Darulova'18] and FPTuner [Chiang'17]
 - Very rigorous
 - Custom input formats
 - Provable error bounds for given input range
 - Impractical for HPC benchmarks

ADAPT (2018)

- Automatic backwards error analysis
 - Obtain gradients via reverse-mode algorithmic differentiation (CoDiPack or TAPENADE)
 - Calculate error contribution of intermediate results
 - Aggregate by program variable
 - Greedy algorithm builds mixed-precision allocation

ADAPT (2018)

Original C Code

AD Instrumented Code

```
#include <iostream>
                                         #include <iostream>
                                         #include <adapt.h>
#include <adapt-impl.cpp> - AD Libraries
                                        AD_real sum = 0.0;
AD_real inc = 0.1;
- Type Changes
double sum = 0.0;
double inc = 0.1;
                                         AD_real do_sum() {
double do_sum() {
    int i;
                                              int i;
    for (i = 0; i < 1000; i++) {
                                              for (i = 0; i < 1000; i++) {
         sum += inc;
                                                   sum += inc;
                                              }
    }
    return sum;
                                              return sum;
}
                                         }
int main() {
                                         int main() {
                                              AD_begin();
AD_independent(inc, "inc");

    Initialization

                                              do_sum();
    do_sum();
                                              cout << AD value(sum) << endl;</pre>
    cout << sum << endl;</pre>
                                              AD_dependent(sum, "sum", 8);
AD_report();
                                                                                     Output
                                              return 0;
    return 0;
                                          }
}
```

ADAPT (2018)

- Used ADAPT on LULESH benchmark to help develop a mixed-precision CUDA version
- Achieved speedup of 20% within original error threshold on NVIDIA GK110 GPU

mair	n		
1	Time	Incr	rement
ī	Lagr	ange	eLeapFrog
	1	Lagr	rangeNodal
	1	I	CalcForceForNodes
	1	1.1	CalcVolumeForceForElems
	1	1.1	InitStressTermsForElems
	1	1	IntegrateStressForElems
	1	1	CollectDomainNodesToElemNodes
	1	1	<pre>CalcElemShapeFunctionDerivatives</pre>
	1	1	[CalcElemNodeNormals
	1	1	SumElemFaceNormal
	1	1.5	<pre>SumElemStressesToNodeForces</pre>
	1	1	CalcHourglassControlForElems
	1	1	<pre>CollectDomainNodesToElemNodes</pre>
	1	1	CalcElemVolumeDerivative
	1	1	VoluDer
	1	1	CalcFBHourglassForceForElems
	1	1	CalcAccelerationForNodes
	1	1	ApplyAccelerationBoundaryConditionsForNodes
	1	1	CalcVelocityForNodes
	1	1	CalcPositionForNodes
	1	Lagr	rangeElements
	1	I	CalcLagrangeElements
	1	1.1	CalcKinematicsForElems
	1	1	CollectDomainNodesToElemNodes
	1	1	CalcElemVolume
	1	1.1	_ CalcElemVolume
	1	1	<pre>[CalcElemCharacteristicLength</pre>
	1	1	_ AreaFace
	1	1	CalcElemShapeFunctionDerivatives
	1	1	<pre>[CalcElemVelocityGradient</pre>
	1	1	CalcQForElems
	1	1	CalcMonotonicQGradientsForElems
	1	1	CalcMonotonicQForElems
	1	1	<pre>[CalcMonotonicQRegionForElems</pre>
	1	1	ApplyMaterialPropertiesForElems
	1	1	EvalEOSForElems
	1	1	CalcEnergyForElems
	1	1	_ CalcPressureForElems
	1	1	[CalcSoundSpeedForElems
	1	1	UpdateVolumesForElems
	1	Calc	TimeConstraintsForElems
		1	CalcCourantConstraintForElems
		1	CalcEudroConstraintForFlame

FloatSmith (ongoing)

- Mixed-precision search via CRAFT
- Source-to-source translation via TypeForge
- Optionally, use ADAPT analysis to narrow search and provide more rigorous guarantees

FPHPC (ongoing)

- Benchmark suite aimed at facilitating scale-up for mixed-precision analysis tools
 - "Middle ground" between real-valued expressions and full applications
 - Currently looking for good case studies

Future Work

- (Better) OpenMP/MPI support
- (Better) GPU and FPGA support
- Model-based performance prediction
- Dynamic runtime precision tuning
- Ensemble floating-point analysis

Summary

- Automated mixed precision is possible
 Practicality vs. rigor tradeoff
- Multiple active projects
 - Various goals and approaches
 - All target HPC applications
- Many avenues for future research

• CRAFT

- 2016: Michael O. Lam and Jeffrey K. Hollingsworth. "Fine-Grained Floating-Point Precision Analysis." Int. J. High Perform. Comput. Appl. 32, 2 (March 2018), 231-245.
- 2013: Michael O. Lam, Jeffrey K. Hollingsworth, Bronis R. de Supinski, and Matthew P. Legendre.
 "Automatically Adapting Programs for Mixed-Precision Floating-Point Computation." In Proceedings of the International Conference on Supercomputing (ICS '13). ACM, New York, NY, USA, 369-378.
- 2011: Michael O. Lam, Jeffrey K. Hollingsworth, and G. W. Stewart. "Dynamic Floating-Point Cancellation Detection." Parallel Comput. 39, 3 (March 2013), 146-155.

SHVAL

- 2017: Ramy Medhat, Michael O. Lam, Barry L. Rountree, Borzoo Bonakdarpour, and Sebastian Fischmeister. "Managing the Performance/Error Tradeoff of Floating-point Intensive Applications." ACM Trans. Embed. Comput. Syst. 16, 5s, Article 184 (October 2017), 19 pages.
- 2016: Michael O. Lam and Barry L. Rountree. "Floating-Point Shadow Value Analysis." In Proceedings of the 5th Workshop on Extreme-Scale Programming Tools (ESPT '16). IEEE Press, Piscataway, NJ, USA, 18-25.

• ADAPT

 2018: Harshitha Menon, Michael O. Lam, Daniel Osei-Kuffuor, Markus Schordan, Scott Lloyd, Kathryn Mohror, and Jeffrey Hittinger. "ADAPT: Algorithmic Differentiation Applied to Floating-Point Precision Tuning." In Proceedings of the International Conference for High Performance Computing, Networking, Storage, and Analysis (SC '18). IEEE Press, Piscataway, NJ, USA, Article 48.

Acknowledgements

Jeff Hollingsworth Bronis de Supinski Barry Rountree Jeff Hittinger

Scott Lloyd Matthew Legendre Harshitha Menon Markus Schordan Lindsay Lam Shelby Funk Ramy Medhat Nathan Pinnow Dee Weikle Garrett Folks Logan Moody Nkeng Atabong

U.S. Department of Energy

DE-CFC02-01ER25489, DE-FG02-01ER25510, DE-FC02-06ER25763, and DE-AC52-07NA27344

Lawrence Livermore National Laboratory

LDRD project 17-SI-004

James Madison University

various provost awards, college grants, and department student funding

Thank you!

github.com/crafthpc
github.com/llnl/adapt-fp
tinyurl.com/fpanalysis

Contact me: <u>lam2mo@jmu.edu</u>

