
Dr. Mike Lam

James Madison University
Lawrence Livermore National Lab

Software Tools for Mixed-Precision
Program Analysis

About Me
• Ph.D in CS from University of Maryland ('07-'14)

– Topic: Automated floating-point program analysis
– Intern @ Lawrence Livermore National Lab (LLNL) in Summer ’11

• Assistant professor at James Madison University since '14
– Teaching: computer organization, parallel & distributed systems,

compilers, and programming languages
– Research: high-performance analysis research group (w/ Dee Weikle)

• Faculty scholar @ LLNL since Summer '16
– Energy-efficient computing project (w/ Barry Roundtree)
– Variable precision computing project (w/ Jeff Hittinger)

Motivation

• IEEE floating-point arithmetic
– Ubiquitous in scientific computing
– More bits => higher accuracy (usually)
– Fewer bits => higher performance (usually)

032 16 8 4

Significand (23 bits)Exponent (8 bits)

Single Precision (FP32)

03264 16 8 4

Significand (52 bits)Exponent (11 bits)

Double Precision (FP64)

Motivation
• Vector single precision 2X+ faster

– Possibly better if memory pressure is alleviated
– Newest GPUs use mixed precision for tensor ops

Credit: https://agner.org/optimize/ and NVIDIA Tesla V100 Datasheet

Operation FP32 Packed FP32 FP64

Add 6 6 6

Subtract 6 6 6

Multiply 6 6 6

Divide 27 32 42

Square root 28 38 43

Instruction latencies for Intel Knights Landing Mixed
FP16 / FP32

FP64

FP32

Question

• How many bits do you need?

Prior Approaches
• Rigorous: forwards/backwards error analysis

– Requires numerical analysis expertise

• Pragmatic: “guess-and-check”
– Requires manual code conversion effort

Credit: Wikimedia Commons

//double x[N], y[N];
float x[N], y[N];
double alpha;

Research Question
• What can we learn about floating-point behavior

with automated analysis?
– Specifically: can we build mixed-precision versions of

a program automatically?

• Caveat: few (or no) formal guarantees
– Rely on user-provided representative run (and

sometimes a verification routine)

double sum = 0.0;

void sum2pi_x()
{

double tmp;
double acc;
int i, j;

[...]

double sum = 0.0;

void sum2pi_x()
{

float tmp;
float acc;
int i;
int j;

[...]

→

FPAnalysis / CRAFT (2011)
• Dynamic binary analysis via Dyninst
• Cancellation detection
• Range (exponent) tracking

3.682236
- 3.682234
0.000002

(6 digits cancelled)

CRAFT (2013)
• Dynamic binary analysis via Dyninst
• Instruction-level replacement of doubles w/ floats
• Hierarchical search for valid replacements

Program

Func1 Func2 Func3

Insn1 Insn2 Insn3 … InsnN

CRAFT (2013)

CRAFT (2013)

NAS Benchmark
(name.CLASS)

Candidate
Instructions

Configurations
Tested

% Dynamic
Replaced

bt.A 6,262 4,000 78.6

cg.A 956 255 5.6

ep.A 423 114 45.5

ft.A 426 74 0.2

lu.A 6,014 3,057 57.4

mg.A 1,393 437 36.6

sp.A 4,507 4,920 30.5

Issues
• High overhead

– Must check and (possibly) convert operands
before each instruction

• Lengthy search process
– Search space is exponential wrt. instruction count

• Coarse-grained analysis
– Binary decision: single or double

CRAFT (2016)
• Reduced-precision analysis

– Simulate conservatively via bit-mask truncation
– Report min output precision for each instruction
– Finer-grained analysis and lower overhead

CRAFT (2016)
• Scalability via heuristic search

– Focus on most-executed instructions
– Analysis time vs. benefit tradeoff

>5.0% - 4:66

>0.1% - 15:45

>1.0% - 5:93 >0.5% - 9:45

>0.05% - 23:60 Full – 28:71

Issue

• Only considers precision reduction
– No higher precision or arbitrary-precision
– No alternative representations
– No dynamic tracking of error

SHVAL (2016)
• Shadow value analysis

– Maintain “shadow” value for every memory location
– Execute shadow operations for all computation
– Pintool: less overhead than similar tools like Valgrind

SHVAL (ongoing)

Medium error
input

Medium error
intermediate

High error
output

Low error
input

Low error
input

x

+

Gaussian
elimination
example

• Single precision shadow values
– Trace execution and build data flow graph
– Color nodes by error w.r.t. original double precision values
– Highlights high-error regions
– Inherent scaling issues

Issue
• No source-level mixed precision

– Difficult to translate instruction-level analysis results to
source-level transformations

– Some users might be satisfied with opaque compiler-
based optimization, but most HPC users want to
know what changed!

CRAFT (2013)
• Memory-based replacement analysis

– Leave computation intact but round outputs
– Aggregate instructions that modify same variable
– Found several valid variable-level replacements

NAS Benchmark
(name.CLASS)

Candidate
Operands

Configurations
Tested

% Executions
Replaced

bt.A 2,342 300 97.0

cg.A 287 68 71.3

ep.A 236 59 37.9

ft.A 466 108 46.2

lu.A 1,742 104 99.9

mg.A 597 153 83.4

sp.A 1,525 1,094 88.9

SHVAL (2017)

Credit: Ramy Medhat (ramy.medhat@uwaterloo.ca)

• Single-vs-double shadow value analysis
– Aggregate error by instruction or memory location over time

• Computer vision case study (Apriltags)
– 1.7x speedup on average with only 4% error
– 40% energy savings in embedded experiments

Issues
• Each instruction or variable is tested in isolation

– Union of valid replacements is often invalid

• Cannot ensure speedup
– Instrumentation overhead
– Added casts to convert data between regions
– Lack of vectorization

CRAFT (ongoing)
• Variable-centric mixed precision analysis

– Use TypeForge (an AST-level type conversion tool)
for source-to-source mixed precision

• Search for best speedup
– Run full compiler backend w/ optimizations
– Report fastest configuration that passes verification

double sum = 0.0;

void sum2pi_x()
{

double tmp;
double acc;
int i, j;

[...]

double sum = 0.0;

void sum2pi_x()
{

float tmp;
float acc;
int i;
int j;

[...]

→

Related Work
• CRAFT, SHVAL, and Precimonious [Rubio’13]

– Very practical
– Widely-used tool frameworks (Dyninst, Pin, LLVM)
– Few (or no) formal guarantees
– Tested on HPC benchmarks on Linux/x86

• Daisy [Darulova’18] and FPTuner [Chiang’17]
– Very rigorous
– Custom input formats
– Provable error bounds for given input range
– Impractical for HPC benchmarks

ADAPT (2018)

Credit: Harshitha Menon (gopalakrishn1@llnl.gov)

• Automatic backwards error analysis
– Obtain gradients via reverse-mode algorithmic

differentiation (CoDiPack or TAPENADE)
– Calculate error contribution of intermediate results
– Aggregate by program variable
– Greedy algorithm builds mixed-precision allocation

ADAPT (2018)

ADAPT (2018)

Credit: Harshitha Menon (gopalakrishn1@llnl.gov)

• Used ADAPT on LULESH
benchmark to help develop a
mixed-precision CUDA version

• Achieved speedup of 20%
within original error threshold
on NVIDIA GK110 GPU

FloatSmith (ongoing)
• Mixed-precision search via CRAFT
• Source-to-source translation via TypeForge
• Optionally, use ADAPT analysis to narrow search

and provide more rigorous guarantees

FPHPC (ongoing)

• Benchmark suite aimed at facilitating
scale-up for mixed-precision analysis tools
– “Middle ground” between real-valued

expressions and full applications
– Currently looking for good case studies

Future Work

• (Better) OpenMP/MPI support
• (Better) GPU and FPGA support
• Model-based performance prediction
• Dynamic runtime precision tuning
• Ensemble floating-point analysis

Summary

• Automated mixed precision is possible
– Practicality vs. rigor tradeoff

• Multiple active projects
– Various goals and approaches
– All target HPC applications

• Many avenues for future research

Papers
• CRAFT

– 2016: Michael O. Lam and Jeffrey K. Hollingsworth. “Fine-Grained Floating-Point Precision Analysis.” Int. J.
High Perform. Comput. Appl. 32, 2 (March 2018), 231-245.

– 2013: Michael O. Lam, Jeffrey K. Hollingsworth, Bronis R. de Supinski, and Matthew P. Legendre.
“Automatically Adapting Programs for Mixed-Precision Floating-Point Computation.” In Proceedings of the
International Conference on Supercomputing (ICS '13). ACM, New York, NY, USA, 369-378.

– 2011: Michael O. Lam, Jeffrey K. Hollingsworth, and G. W. Stewart. “Dynamic Floating-Point Cancellation
Detection.” Parallel Comput. 39, 3 (March 2013), 146-155.

• SHVAL
– 2017: Ramy Medhat, Michael O. Lam, Barry L. Rountree, Borzoo Bonakdarpour, and Sebastian

Fischmeister. “Managing the Performance/Error Tradeoff of Floating-point Intensive Applications.” ACM
Trans. Embed. Comput. Syst. 16, 5s, Article 184 (October 2017), 19 pages.

– 2016: Michael O. Lam and Barry L. Rountree. “Floating-Point Shadow Value Analysis.” In Proceedings of the
5th Workshop on Extreme-Scale Programming Tools (ESPT '16). IEEE Press, Piscataway, NJ, USA, 18-25.

• ADAPT
– 2018: Harshitha Menon, Michael O. Lam, Daniel Osei-Kuffuor, Markus Schordan, Scott Lloyd, Kathryn

Mohror, and Jeffrey Hittinger. “ADAPT: Algorithmic Differentiation Applied to Floating-Point Precision Tuning.”
In Proceedings of the International Conference for High Performance Computing, Networking, Storage, and
Analysis (SC '18). IEEE Press, Piscataway, NJ, USA, Article 48.

Jeff Hollingsworth
Bronis de Supinski
Barry Rountree
Jeff Hittinger

Scott Lloyd
Matthew Legendre
Harshitha Menon
Markus Schordan

Dee Weikle
Garrett Folks
Logan Moody
Nkeng Atabong

U.S. Department of Energy
DE-CFC02-01ER25489, DE-FG02-01ER25510, DE-FC02-06ER25763, and DE-AC52-07NA27344

Lawrence Livermore National Laboratory
LDRD project 17-SI-004

James Madison University
various provost awards, college grants, and department student funding

Lindsay Lam
Shelby Funk
Ramy Medhat
Nathan Pinnow

Acknowledgements

github.com/crafthpc

github.com/llnl/adapt-fp

tinyurl.com/fpanalysis

Contact me:
lam2mo@jmu.edu

Thank you!

https://github.com/crafthpc
https://github.com/llnl/adapt-fp
https://tinyurl.com/fpanalysis
http://jmu.edu

