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Abstract

Internet coordinate systems have emerged as an efficient
method to estimate the latency between pairs of nodes with-
out any communication between them. However, most coor-
dinate systems have been evaluated solely on data sets built
by their authors from measurements gathered over large pe-
riods of time. Although they show good prediction results,
it is unclear whether the accuracy is the result of the sys-
tem design properties or is more connected to the charac-
teristics of the data sets. In this paper, we revisit a simple
question: how do the features of the embedding space and
the inherent attributes of the data sets interact in produc-
ing good embeddings? We adapt the Vivaldi algorithm to
use Hyperbolic space for embedding and evaluate both Eu-
clidean and Hyperbolic Vivaldi on seven sets of real-world
latencies. Our results show that node filtering and latency
distributions can significantly influence the accuracy of the
predictions. For example, although Euclidean Vivaldi per-
forms well on data sets that were chosen, constructed and
filtered by the designers of the algorithm, its performance
and robustness decrease considerably when run on third-
party data sets that were not filtered a priori. Our results
offer important insight into designing and building coordi-
nate systems that are both robust and accurate in Internet-
like environments.

1 Introduction
Internet coordinate systems estimate the latency between

pairs of nodes without any communication between them.
They associate each node to a position in a finite coor-
dinate space; the latency between two nodes is then esti-
mated as the distance between their positions in the space
[15, 17, 26, 11, 14, 20, 3, 4]. Coordinate systems are an ef-
fective building block for distributed systems and protocols
that allow the choice of communication peers based on the
latency metric. For example, in the construction of struc-
tured overlay networks [23, 19, 18], nodes usually select
the closest peers to optimize queries and responses. In file-
sharing applications [6, 2] or content distribution networks
[5], it is more efficient to download the required content
from the server with the lowest latency.

All existing coordinate systems, with a few notable ex-
ceptions [9, 8], have been evaluated only on data sets cho-
sen, constructed, and filtered by the authors. Because they

introduce severe inaccuracies [31, 10, 13, 28], nodes with
bad connectivity or part of triangle inequality violations
were often removed. To limit oscillations in coordinates [9],
measured latencies were smoothened by averaging mea-
surements gathered over large periods of time. However, in
a wide area environment, such measurement manipulation
is not always possible or desirable. Although network coor-
dinates predict distances accurately, it is yet unclear whether
the accuracy is the result of design properties of the coordi-
nate system or is more related to attributes of the data sets
used for testing.

In this paper, we revisit network coordinate approaches
with no vested interest in showing them to be effective. In-
stead, we aim to offer an analysis on how data set properties
and characteristics of the embedding space interact in pro-
ducing good embeddings. To understand the influence of
the data sets, we do not necessarily remove nodes that par-
ticipate in triangle inequality violations or with bad connec-
tivity or smoothen latency samples. To examine the effect
of space selection–Euclidean or Hyperbolic–decision, we
develop a hybrid approach of the Vivaldi algorithm [4] that
uses both Euclidean and Hyperbolic space.

We evaluate the hybrid Vivaldi algorithm on seven sets of
latency measurements, three from King [7] measurements
between DNS servers and the other four between PlanetLab
nodes. Our results reveal that the accuracy of the embed-
ding depends on the latency distribution of each data set
and is positively influenced by both node filtering and la-
tency filtering. Furthermore, contrary to what we expected,
we find that the performance of the two versions of Vivaldi
varies with each data set. Hyperbolic coordinates under-
estimate large latencies (> 100 ms) but are more accurate
and comparable to Euclidean coordinates in estimating dis-
tances between closer nodes.

Our contributions can be summarized as follows:
• We show relationships between the properties of a co-

ordinate system and the inherent characteristics of the
data sets on which it is used. Our results reveal that
existing systems work well on the data sets that were
tuned for them, but not so well with third party data
sets that exhibit different characteristics.
• We propose two distributed embedding heuristics that

use both Euclidean and Hyperbolic coordinates and
achieve good accuracy for all data sets. Our re-
sults offer insight into building coordinate systems that



are both robust and accurate in Internet-like environ-
ments.
• We construct a hybrid Vivaldi algorithm that em-

beds nodes simultaneously in both Hyperbolic and Eu-
clidean spaces. In doing so, we are the first to compare
Euclidean and Hyperbolic embeddings in a distributed
setting and using a data set with more than 200 nodes.

The rest of the paper is organized as follows. Section 2
reviews design decisions that impact the accuracy of exist-
ing coordinate systems. In Section 3 we describe the Vivaldi
algorithm and the data sets used for evaluation. We present
the effects of node and latency filtering on the accuracy of
Euclidean Vivaldi in Section 4. In Section 5, we compare
the accuracy of the embeddings using both Euclidean and
Hyperbolic coordinates. Based on observations from Sec-
tions 4 and 5 we propose distributed heuristics that leverage
the best of both spaces in Section 6. We conclude in Sec-
tion 7.

2 Related Work
In this section, we review design decisions that impact

the accuracy of network embedding. Existing coordinate
systems have three important components to their designs:
space selection, probing and positioning. Space selection
involves how to calculate the distances between points,
whether the space is Euclidean, how many dimensions it
has, etc. Probing is the process of measuring latency to a
few peers, or chosen landmarks. Positioning is the opti-
mization process of using probe results to assign a location
to every node in the space. We focus here on space selection
and probing.

The latencies between pairs of nodes in the Internet do
not form a metric space, mainly because of asymmetric
routing and triangle inequality violations. Embedding In-
ternet nodes into a metric space negatively impacts the ac-
curacy of the embedding. Several research efforts have tried
to determine the space that best fits the Internet. GNP [15],
Lighthouses [17], Virtual Landmarks [26], ICS [11], PIC
[3] and Vivaldi [4] use an n-dimensional Euclidean coor-
dinate space, motivated by the fact that latencies in the
Internet are dominated by geographic distance. Dabek et
al. [4] propose two other models. Spherical coordinates
are motivated by the fact that the modeled distances are
computed on the spherical surface of the Earth. However,
since paths in the Internet do not wrap around the Earth,
the spherical model has been abandoned for a simpler Eu-
clidean space. The height model augments 2-dimensional
Euclidean spaces with a height that captures the time needed
to traverse the access links from a node to the core of the
Internet. Lee et al. [10] add a localized adjustment term
to Euclidean coordinates to account for the non-Euclidean
effect of triangle inequality violations. Shavitt and Tenkel
[21] propose Hyperbolic spaces, motivated by the jellyfish
structure—a core in the middle with many tendrils—of the
Internet [27]. We show how Euclidean and Hyperbolic em-
beddings compare to each other [12] but also how they in-
teract with measurement manipulation techiques like node
and latency filtering.

The measurement data collected is very important in al-
lowing nodes to position themselves correctly in the embed-
ding space. Ledlie et al. [9, 8] find that unfiltered latencies
disrupt the Vivaldi algorithm and by removing some latency
samples, the coordinates become more stable and accurate.
Nodes with bad connectivity or part of severe triangle in-
equality violations have generally been removed from mea-
surements [4, 28]. However, it is unclear what system de-
signers should do when measurement manipulation is not
possible or not desired. We propose heuristics that require
no a priori filtering and still perform well; accuracy is still
good without artificially removing nodes and links from the
calculations.

3 Methodology
3.1 Vivaldi

We chose Vivaldi as our network coordinate system be-
cause it is distributed and adaptive, running without global
state and accommodating the dynamics of the network. Vi-
valdi simulates a system of springs where each spring cor-
responds to a pair of nodes. The rest length of a spring em-
ulates the real distance between two nodes while the actual
length is the distance computed by the embedding. The en-
ergy of each spring is proportional to its displacement (the
difference between the rest length and the current length).
The algorithm runs iteratively at each node and simulates
the progress of the springs toward a state with minimum
energy. At every step, each node will be pushed to a new
position that minimizes the displacement of the springs it is
connected to. Two factors affect the position of a node after
each step: the scaling factor (M) and the direction (D) of
movement. M is proportional to the displacement of the as-
sociated springs and D is the opposite of the gradient of the
energy function with respect to the position of the node. Af-
ter computing the scaling factor and the direction of move-
ment the following rule updates the coordinates of a node:

x = x+δ×M×D

where δ is the timestep between two consecutive updates.
We consider an n-dimensional coordinate space. The en-

ergy of a spring between nodes x and y is:

Exy =
1
2

k(rttxy−d(x,y))2

where rttxy− d(x,y) is the displacement of the spring1 and
k is the elasticity constant.

Dabek et al. [4] use coordinates in Euclidean space
augmented with a height value h. The distance between
two nodes x and y, with x = (x1,x2, . . . ,xn,hx) and y =
(y1,y2, . . . ,yn,hy), is:

d(x,y) =

√
n

∑
i=1

(xi− yi)2 +hx +hy

1We use subscripts to differentiate between a measured value (rttxy) and
a computed value (d(x,y))
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Name Source Nodes RTT (ms) Hyp. TIVs Duration When Filtering
Avg. Med. Curv. Node Latency

PL-Vivaldi [24, 4] 192 193 152 -20 5% 1 mo. 2004
√ √

PL-Sidecar [22] 384 250 194 -40 14% 1 hr. 5/2006
King-Meridian [7, 29] 2500 79 56 -11 8% 1 wk. 5/2004

√ √

King-Vivaldi [7, 4] 1953 326 284 -32 5% 1 wk. 6/2006
√

PL-Vivaldi-Lat 139 92 90 -16 4% 1 mo. 2004
√ √

PL-Sidecar-Filt 262 205 172 -34 13% 1 hr. 5/2006
√

King-Vivaldi-Filt 1740 181 158 -16 4% 1 wk. 6/2006
√ √

Table 1. Data Sets. Columns represent: (1) the data set name, (2) the publication that describes
the measurement and filtering methodology, (3) the number of nodes, (4) the average RTT, (5) the
median RTT, (6) the hyperbolic curvature that produces the most accurate embedding (Section 5.3),
(7) the percentage of triples that violate the triangle inequality, (8) the duration of data collection, (9)
when the data was gathered, (10) whether nodes were filtered (Sections 4.2 and 5.6) and (11) whether
latency samples were filtered (Sections 4.2 and 5.6).

 0

 20

 40

 60

 80

 100

-200 -150 -100 -50  0  50  100  150  200

pe
rc

en
t (

%
)

absolute error

PL-Vivaldi
King-Meridian

PL-Sidecar
King-Vivaldi

 0

 20

 40

 60

 80

 100

-1 -0.5  0  0.5  1  1.5  2

pe
rc

en
t (

%
)

relative error

PL-Vivaldi
King-Meridian

PL-Sidecar
King-Vivaldi

(a) (b)

Figure 1. Cumulative distributions of (a) absolute and (b) relative errors for the four main data-sets
for Euclidean embedding

After computing the gradient of the energy function, they
obtain the following expressions for M and D:

M =
rttxy−d(x,y)√

n

∑
i=1

(xi− yi)2

D = x− y

3.2 Data Sets and Experiment Setup
We use seven data sets: four main data sets and three

derived from the main sets, summarized in Table 1. King
data sets consist of latencies between DNS servers; PL data
sets between PlanetLab nodes. We use this diversity of data
sets to capture the behavior of the embedding in different
environments. Details of the measurements can be found in
the references in the table.

We use the MIT p2psim [16] packet-level network simu-
lator. Each node has 32 neighbors: half selected as the clos-
est peers in network latency and the rest chosen at random.
Each node starts at the origin of the space, and moves using
Vivaldi’s adaptive timestep to converge quickly. After ten
seconds, we stop the algorithm and collect the coordinates;
longer runs did not significantly improve accuracy.

4 The Importance of Measurement Manipu-
lation

In this section we analyze the accuracy of the embed-
dings using error distributions and show how characteristics
of the data sets can influence the final results. We position
nodes in an Euclidean space because distances in the In-
ternet are dominated by geographic distance and paths do
not generally ”‘wrap around”’ the Earth. In Section 5 we
also experiment with Hyperbolic spaces. We choose a two-
dimensional Euclidean space augmented with heights due
to its simplicity and because it was shown to produce good
embeddings [4]. We experimented with higher-dimension
spaces and obtained similar results.

4.1 Error Distributions
We evaluate the accuracy of Euclidean Vivaldi by abso-

lute and relative errors computed over all pairs of nodes in
the four main data sets. Absolute error is the difference be-
tween the embedded distance and the real distance; relative
error is the absolute error divided by the real distance. We
do not use absolute values for these two measures (as in
other work) because we want differentiate between under-
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and over-estimation. Other accuracy metrics, like relative
rank loss [12] better capture the usefulness of the embed-
ding for applications, but by relying only on the relative
distance to nodes they tend to overstate the importance of
small errors.

Figure 1(a) presents the distribution of the absolute error
for the four main data sets. Each point corresponds to one
pair of nodes. Euclidean Vivaldi exhibits the best perfor-
mance on the PL-Vivaldi data set, with more than 90% of
the pairs having an error within the range [-50,50]. For the
PL-Sidecar and King-Vivaldi data sets, contrary to what we
expect, the embedding performs much worse. Only 60% of
the pairs have an absolute error within the range [-100,100],
compared to more than 80% in the first two data sets.

We also plot the distribution of relative errors in Fig-
ure 1(b). A relative error of 1 between a pair of nodes
means that the embedded distance is twice the real distance;
of -0.5 that the embedded distance is half the real distance.
We summarize the error prediction results of the two em-
beddings in Table 2 (ignore the columns labeled “Hyp” for
now).

Of the four main data sets, Vivaldi performs worst on
PL-Sidecar and King-Vivaldi. For example, in PL-Sidecar,
only 39% of the distances are predicted to be within 25% of
the real distances (columns 2 and 3 of Table 2). This PL-
Sidecar data set was created by averaging RTTs between
PlanetLab nodes over a period of an hour, as opposed to the
other main data sets, built from measurements gathered over
the course of at least a week. Further, unlike King-Meridian
and PL-Vivaldi, no nodes were removed due to bad mea-
surements or connectivity problems. On the other hand,
King-Vivaldi has the worst underestimation error: close to
20% of all distances are estimated to be less than half of the
real distances, compared to around 10% for the other three
data sets. More, 72% of all distances are underestimated in
King-Vivaldi, unlike the other main data sets where at most
58% of the predictions are less than the real latency. Af-
ter contacting the creators of the King-Vivaldi set and care-
fully examining the latencies, we found that it contains sev-
eral nodes that appear to be very close to all other nodes.
They create bad triangle inequality violations and may be
the source of the underestimation.

From these results, we hypothesize that both latency and
node filtering improve the quality of the embedding. While
latency filtering has already been shown to improve embed-
ding accuracy [9], we seek to understand the influence of
node filtering next.

4.2 Node Filtering
Latency and node filtering can improve the embeddings.

Ledlie et al. found that unfiltered latencies disrupt the Eu-
clidean Vivaldi algorithm [9]. By removing some latency
samples, the solution becomes more stable and accurate.
Wang et al. obtain better performance with Euclidean Vi-
valdi when they do not probe edges that are part of severe
triangle inequality violations [28]. Yet, common practice is
to also filter out nodes that participate in many triangle in-
equality violations. Here we focus on node filtering and ask
how the removal of certain nodes affects the accuracy of the

Figure 2. Hyperboloid with two sheets: points
in the Hyperbolic space use only the upper
sheet, O is the origin.

embedding.
We use two data sets. Dabek et al. generated King-

Vivaldi-Filt from the King-Vivaldi data set by removing the
nodes with severe triangle inequality violations. We apply
the same approach, removing 132 nodes from PL-Sidecar to
produce PL-Sidecar-Filt. Table 1 includes these data sets;
Table 2 presents the resulting accuracy statistics.

As expected, Euclidean Vivaldi performs much better on
King-Vivaldi-Filt than on King-Vivaldi. After removing the
outliers, more than 70% of the distances are predicted to be
within 25% of the real values, an increase of almost double.
Outliers in the node set can disrupt the embedding consid-
erably. For the PL-Sidecar-Filt data set, however, the im-
provement is smaller, indicating that latency filtering, which
was not applied to this data set, plays a significant role in the
embedding process.

5 The Importance of Space Selection
In the previous section we have shown that the accuracy

of the coordinates depends significantly on the filters ap-
plied to them. Next we seek to understand how the char-
acteristics of the embedding space impact the behavior of
the embedding and how can we use the results to obtain
more robust coordinate systems. We compare the accuracy
results obtained when embedding nodes in Euclidean and
Hyperbolic spaces. Hyperbolic coordinates are motivated
by several studies showing that the Internet has a jellyfish
structure (a core in the middle and many tendrils connected
to it) [27, 25]. In a Hyperbolic space the distance between
two points is computed along a curved line bent towards the
origin. The closer to the origin the points are, the shorter
the distance between them is. Similarly, in the Internet, the
farther two nodes are from the core, the longer the path be-
tween them is. Shavitt and Tankel [21] and Lua et al. [12]
have shown good accuracy results when embedding nodes
into a Hyperbolic space.

5.1 Hyperbolic Spaces
It is hard for an observer in the three-dimensional Eu-

clidean world to visualize the Hyperbolic world [1]. To bet-
ter understand it, different Euclidean models of Hyperbolic
space have been constructed. Unfortunately, each model of
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% of all predicted dist % of underestimated dist % of overestimated dist
within 25% within 50% within 100% of all < 1

2 real of all > 2× realof real of real of real
Data Set Euc Hyp Euc Hyp Euc Hyp Euc Hyp Euc Hyp Euc Hyp Euc Hyp

PL-Vivaldi 76 44 90 73 97 90 58 50 5 7 42 50 3 19
PL-Vivaldi-Lat 77 72 90 86 97 97 47 56 4 5 53 44 3 3
PL-Sidecar 39 32 63 60 81 76 48 44 8 7 52 56 19 23
PL-Sidecar-Filt 49 35 70 62 83 76 50 48 5 6 50 52 17 24
King-Vivaldi 34 33 68 70 92 92 72 72 19 16 28 28 8 7
King-Vivaldi-Filt 71 40 90 79 98 96 55 73 5 12 45 27 2 4
King-Meridian 38 36 67 69 84 89 57 63 9 13 43 37 16 10

Table 2. Summary of prediction errors for the seven data sets. We show, for each Embedding and
each data set, (1) the percentage of distances estimated to be within 25%, 50% and 100% of the
real distances (higher values are better), (2) the percentage of all underestimated distances and
of the distances predicted to be less than half the real distances (lower values are better), (3) the
percentage of all overestimated distances and of the ones estimated as more than twice the real
distances (lower values are better).

Hyperbolic geometry is distorted, just as a two-dimensional
map is a distorted depiction of the Earth.

To describe the Hyperbolic space, all we need to know
is the amount of distortion introduced by the model used
to embed the space. The distortion is determined by two
parameters: curvature and metric. Curvature is a charac-
teristic of the space and represents the amount by which
an object in the space deviates from being flat: Euclidean
spaces have curvature 0 because all lines are flat; Hyper-
bolic spaces have negative curvature. The metric is a char-
acteristic of the model used to embed the space and rep-
resents the distance function between two points. Know-
ing the curvature of a Hyperbolic space and the metric of
its model we can determine the distance between any two
points in the space as well as the curved line along which
the distance is computed.

Of several equivalent models of the Hyperbolic world,
we choose the hyperboloid, in which all points lie on the
upper sheet of a hyperboloid, due to the simplicity of its
metric. Figure 2 presents a hyperboloid with two sheets.
Although the model stretches to infinity, it is cut for obser-
vation. The distance between two points on the hyperboloid
is computed along a line formed by the intersection of the
hyperboloid with the plane determined by the two points
and the origin.

5.2 Hyperbolic Vivaldi
We now consider the original Vivaldi protocol where the

nodes and the conceptual springs lie instead in a Hyperbolic
space. The spring placed between two points will move
along a curved line under a force proportional to the differ-
ence between the real distance and the Hyperbolic distance.

The distance between two points x=(x1,x2, . . . ,xn) and
y = (y1,y2, . . . ,yn) in a n-dimensional Hyperbolic space of
curvature k is:

d(x,y)=arccosh

(√
(1+

n

∑
i=1

x2
i )(1+

n

∑
i=1

y2
i )−

n

∑
i=1

xiyi

)
×|k|

This formula is derived from the distance between two
points on the unit hyperboloid (the arccosh part) multiplied
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Figure 3. Median error of the embedding ver-
sus space curvature.

by the absolute value of the curvature of the Hyperbolic
space (k). The curvature factor is similar to the unstretch
value used by Shavitt and Tankel in Hyperbolic BBS [21]
to normalize the distance on the hyperboloid.

The gradient of the energy function provides the scaling
factor M and the direction D that guide the movement of
a node at each iteration of the algorithm, similarly to Eu-
clidean Vivaldi (Section 3).

D = u


√

1+∑
n
i=1 y2

i√
1+∑

n
i=1 x2

i

x− y


M =

rttxy−d(x,y)√
cosh2 d(x,y)−1

We evaluate the performance of Vivaldi in Hyperbolic
space using the data sets in Table 1. We modified the Vivaldi
code to maintain both Euclidean and Hyperbolic coordi-
nates concurrently but left the rest of the protocol and its pa-
rameters unchanged (see Section 3.2). The Hyperbolic co-
ordinates have three dimensions while the Euclidean space
remains two-dimensional with heights. Thus, a node has the
same number of degrees of freedom in both spaces.

5



 0

 20

 40

 60

 80

 100

+/-2001000-100-200

(a) PL-Vivaldi

Euclidean
Hyperbolic

+/-2001000-100

(b) King-Meridian

Euclidean
Hyperbolic

+/-2001000-100

(c) PL-Sidecar

Euclidean
Hyperbolic

2001000-100

(d) King-Vivaldi

Euclidean
Hyperbolic

Figure 4. Cumulative distribution of absolute errors (in milliseconds) for the main data-sets for dif-
ferent embeddings.

5.3 Curvature of the Space
To provide the best chance for Hyperbolic embeddings,

we choose the best-fit curvature value—the curvature that
minimizes median error—which depends on the embedded
latencies and varies by data set. Figure 3 shows how cur-
vature affects the accuracy of the embedding on the PL-
Vivaldi data set. The horizontal axis is the curvature value
and the vertical axis the median absolute error of the em-
bedding (the difference between the embedded and real dis-
tances). Figure 3 shows median error decreases to a plateau
at approximately -17 and is relatively stable until -27.

To better analyze this relationship, we separate over-
estimation error—the median error when embedding dis-
tance is greater than the real distance—from underestima-
tion error—the median error of the rest. Underestimation
error decreases as curvature becomes increasingly negative.
Overestimation error decreases from curvature -32 to -17,
then oscillates between 10 and 15 ms. Any curvature be-
tween -27 to -17 will produce a low embedding error. We
choose the curvature for the embedding of the PL-Vivaldi
data set to be -20. Based on similar results, we set the cur-
vatures for every other data set independently because we
want to obtain the best possible Hyperbolic embeddings.

5.4 Error Distributions
Similarly to Vivaldi in Euclidean spaces, we use abso-

lute and relative errors to evaluate the accuracy of Vivaldi in
Hyperbolic spaces. We focus first on the four main data sets
and present the absolute error distributions in Figure 4. We
replot the error distributions of Euclidean Vivaldi to better
compare the two approaches. For the PL-Vivaldi data set,
both embeddings have as many over-estimated distances as
under-estimated. However, Hyperbolic Vivaldi has higher
error in both. 10% of the pairs are estimated to be over 100
ms closer than the real distance when embedded into Hyper-
bolic space, compared to fewer than 5% in Euclidean space.
On the other hand, the accuracy of Hyperbolic Vivaldi im-
proves visibly when simulated on the King-Meridian data
set. For the PL-Sidecar and King-Vivaldi data sets, simi-
larly to Euclidean Vivaldi, the performance of Hyperbolic

Vivaldi is worse than for the first two data sets. However,
only the PL-Sidecar data set has as many under- as over-
estimated distances. For the King-Vivaldi latencies the ratio
is skewed, with 65% of pairs underestimated compared to
only 35% overestimated.

Figure 5 presents the distributions of relative errors. The
Hyperbolic embedding is less accurate than the Euclidean
embedding on all main data sets except King-Meridian—
the one that has the smallest median RTT. Table 2 confirms
the observation: 16% of the distances in the Euclidean em-
bedding are estimated to be at least twice as much as the
real values, compared to only 10% in the Hyperbolic em-
bedding. Furthermore, Figures 4 and 5 also show that there
is almost no difference between the relative underestima-
tion error of the two algorithms over all data sets, as op-
posed to the absolute underestimation error. This discrep-
ancy could be because Hyperbolic Vivaldi underestimates
more distances than Euclidean Vivaldi but most of these dis-
tances are large, causing large absolute errors but not large
relative errors. On the other hand, Euclidean Vivaldi under-
estimates smaller distances and although the absolute error
is smaller, it is significant. That Hyperbolic Vivaldi per-
forms best on the data set that has shorter distances sug-
gests that it is better-suited to low-latency data sets and to
predicting smaller latencies.

From these results, we hypothesize that Hyperbolic
Vivaldi performs much better for shorter distances than
longer distances. We evaluate this hypothesis next.

5.5 Latency Distribution
To verify that Hyperbolic Vivaldi performs better on

shorter distances, we construct a new data set with lower la-
tencies between nodes. We choose PL-Vivaldi and remove
all nodes that have more than 25% of the RTTs to each of
the other nodes higher than 100 ms. This produces the PL-
Vivaldi-Lat data set, composed of 139 nodes, with median
and mean RTT of 90 and 92 ms. These values are much
closer to those that characterize the King-Meridian data set.
We chose PL-Vivaldi as the initial data set because it ex-
hibits the greatest difference in accuracy between the Eu-
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Figure 6. Cumulative distributions of absolute errors for (a)PL-Vivaldi and (b)PL-Sidecar data-sets
for different embeddings

clidean and Hyperbolic embeddings. We compute the error
distributions for PL-Vivaldi-Lat and summarize the results
in Table 2. As expected, while Euclidean Vivaldi performs
similarly for the new data set, the accuracy of the Hyper-
bolic embedding improves considerably: 86% of the pairs
of nodes are predicted to have an RTT within 50% of the
real RTT, compared to only 73% for PL-Vivaldi.

That Hyperbolic embeddings tend to underestimate large
latencies, but perform much better for shorter distances
can can be used to construct new and efficient hybrid em-
beddings. These embeddings would benefit from both
Euclidean and Hyperbolic coordinates and would achieve
good accuracy for all data sets, as described in Section 6.
They could be particularly useful for applications, such as
overlay multicast, server selection or overlay construction,
that have been shown to suffer from the high embedding
errors on short links [30].

5.6 Node Filtering Revisited
To evaluate how node filtering affects the Hyperbolic

embedding, we use King-Vivaldi-Filt and PL-Sidecar-Filt.

Table 2 shows that the accuracy of the Hyperbolic embed-
ding does not improve as much as that of Euclidean when
nodes are filtered in either of the data sets. This suggests
that Hyperbolic coordinates are less sensitive to node filter-
ing and thus may be good candidates where node filtering is
not desired or possible.

6 Embedding Heuristics
We want to obtain an embedding algorithm that benefits

from both Euclidean and Hyperbolic coordinates. Ideally,
when it estimates the latencies to other nodes, a node in
our system would select to use the coordinates and distance
function that yield the smallest error. Unfortunately, this
approach is unfeasible in a distributed setting where nodes
make decisions without global knowledge and where the
number of measurements is limited. To address this, we
propose two heuristics that allow a node to choose the best
coordinates based only on local information.

In the first heuristic, called NoHeightsHyperbolic, the es-
timated distance between each pair of nodes is computed
using the Euclidean metric whenever both nodes in the pair
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have the height at most 1. When at least one of the nodes
has a height greater than 1, we use the Hyperbolic distance.
The intuition behind this heuristic is drawn from the initial
motivation for height vectors by Dabek et al. [4]. The Eu-
clidean distance models the Internet core where latencies
are proportional to geographic distances, while the height
accounts for the time taken to reach the core from a node
behind an access link. By using Hyperbolic distance esti-
mation whenever a node has height, we offer an alternative
to the Vivaldi’s height model.

The second heuristic, ThresholdHyperbolic, is partly
based on the observations made in Section 5. Since Hy-
perbolic space seems to underestimate larger latencies, we
choose Euclidean distance estimation for every pair whose
Hyperbolic distance is computed to be more than a certain
threshold. In the experiments we used a threshold of 100ms.

We show results for the PL-Vivaldi and PL-Sidecar data
sets in Figure 6. The absolute error distributions of the em-
beddings using the two heuristics are labeled NoHeights and
Threshold. The ThresholdHyperbolic embedding improves
the accuracy of the pure Hyperbolic embedding and, as ex-
pected, eliminates almost completely the difference in un-
derestimation when compared to the Euclidean embedding.
Although it does not perform better than Euclidean Vivaldi,
it proves to be a more general alternative due to its good ac-
curacy for all data sets. Due to the Hyperbolic component, it
is also more robust than a pure Euclidean embedding when
node filtering is not used.

7 Conclusions
We have shown how the inherent properties of data sets

used in network coordinates papers can interact with the
space selection process to produce better embeddings. We
adapted the Vivaldi algorithm so that nodes position them-
selves in a Hyperbolic space and we compared the per-
formance of Euclidean and Hyperbolic embeddings using
seven different data sets. Our results show that the accuracy
of the two versions of Vivaldi varies with each data set and
that Hyperbolic coordinates have the tendency to underes-
timate large latencies. Further, the accuracy of the results
depends significantly on the latency distribution of the data
sets and on the filters applied to them. Based on these re-
sults we presented a distributed heuristic, ThresholdHyper-
bolic, that uses both Euclidean and Hyperbolic coordinates
and achieves good accuracy for all data sets. We believe
that our observations provide insight into how to build more
robust and more accurate distributed coordinate systems.
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