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ABSTRACT
Triangle inequality violations (TIVs) are important for latency sen-
sitive distributed applications. On one hand, they can expose op-
portunities to improve network routing by finding shorter paths be-
tween nodes. On the other hand, TIVs can frustrate network em-
bedding or positioning systems that treat the Internet as a metric
space where the triangle inequality holds. Even though triangle
inequality violations are both significant and curious, their study
has been limited to aggregate data sets that combine measurements
taken over long periods of time.

The limitations of these data sets open crucial questions in the
design of systems that exploit (or avoid) TIVs: are TIVs stable or
transient? Or are they illusions caused by aggregating measure-
ments taken at different times? We collect latency matrices at vary-
ing sizes and time granularities and study dynamic properties of tri-
angle inequality violations in the Internet. We show that TIVs are
not results of measurement error and that their number varies with
time. We examine how latency aggregates of data measured over
longer periods of time preserve TIVs. Using medians to compute
violations eliminates most of the TIVs that appear sporadically dur-
ing the measurement but it misses many of the ones that are present
for more than five hours.

Categories and Subject Descriptors
C.2.0 [Computer-communication networks]: Data communica-
tions; C.2.4 [Computer-communication networks]: Distributed
systems; C.4 [Performance of systems]: Measurement techniques;
H.4.3 [Information systems applications]: Communications ap-
plications

General Terms
Measurement, design
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TIV, triangle inequality violation, latency, variation
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1. INTRODUCTION
End-to-end latencies in the Internet demonstrate triangle inequal-

ity violations (TIVs). TIVs affect network coordinate [1, 2] and
positioning [3] systems and latency-reducing overlays [4]. On one
hand, TIVs can be inconvenient for coordinate and positioning sys-
tems: because these applications treat the Internet as a metric space—
where TIVs are prohibited—inaccurate results may appear. On the
other hand, TIVs expose opportunities to improve network routing
by offering lower-latency one-hopdetour [5] paths.

Existing studies on TIVs show that they are widespread and per-
sistent [6, 2, 7]. TIVs are not measurement artifacts, but a natural
consequence of the Internet routing [8, 9]. However, all evidence
about TIVs has been limited to aggregate latency data sets [2, 10,
11, 6, 3, 8, 7, 9] that combine measurements taken at different times
over long periods. These data sets fail to capture the variations of
triangle inequalities and may offer false illusions to applications
that rely on TIVs or the lack thereof. For example, representing
multiple measurements with their median values may reveal TIVs
that are short-lived in reality and thus not necessarily a threat for
network coordinates, or may miss long-lived TIVs that could be
exploited by overlay routing.

The limitations of these data sets open crucial questions for the
design of systems that exploit (or filter) TIVs: Are TIVs stable or
transient? Are they real or simply illusions caused by aggregating
measurements taken at different times? Are they caused by queuing
delay or load? And finally, is the performance of these systems
affected by the way data is aggregated?

In this paper, we aim to offer new insight into the properties of
triangle inequality violations in the Internet, as well as to provide
guidelines for better design and evaluation of the systems affected
by TIVs. We collect four new latency data sets of different sizes
and at varying time granularities. We show that the number of TIVs
varies with time and that, when aggregating multiple measurements
using medians or minimums, as all previous evaluations have done,
weunderestimate the number of TIVs that existed at any point dur-
ing the measurement. We propose two additional measurement ag-
gregation techniques and discuss the advantages and disadvantages
in applying them in the evaluation of network coordinates and de-
tour routing.

Our contributions can be summarized as follows:

• we collect new data sets, of various sizes and granularities,
better suited for analyzing TIVs in a dynamic network envi-
ronment (§ 3);

• we present a new study on triangle inequality violations in
the Internet; we show that TIVs are real and not illusions of
measurements (§ 4) and that they vary with time (§ 5);

• we analyze four different methods of computing TIVs from
individual measurements and discuss their effects on the per-
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Figure 1: a) Example of triangle inequality violation, b,c) Median valuescan create the illusion of TIVs. Latencies for AB, BC and
AC are measured several times. We show the values att1, t2 and t3. The final data set is compiled from the medians: although at no
time-step is there a TIV among A, B and C, the medians indicate otherwise (b); alternatively, even if each measurement indicates the
presence of a TIV, the medians do not reflect it in the final data set(c). All latencies are derived from real measurements.

formance of detour routing and network coordinate applica-
tions (§ 6).

2. MOTIVATION
A triangle inequality violation occurs among a triple of nodes in

the Internet when the latencies between them cannot form a valid
triangle. Figure 1(a) presents such a scenario. We call a triple of
nodes that violates the triangle inequality abad triangle. In the bad
triangle ABC, AC is thelong side while AB and BC are theshort
sides. Alternatively, borrowing terminology from Detour [12, 5],
we refer to the path (A,B,C) as thedetour path and to the path
(A,C) as thedirect path.

TIVs are important for latency-sensitive distributed applications
such as network coordinate systems or latency-reducing overlay
routing. Network coordinates [2, 1] assign positions in a geometric
space to Internet hosts, such that the distance between the positions
estimates the real latency between hosts. Any three points that form
a bad triangle cannot be embedded accurately into a space that pro-
hibits TIVs—such as a geometric space. Thus, the more triangle
inequalities there are, the less precise the embedding is [13, 6].
Conversely, that network coordinates do not work well with metric
spaces can also be helpful [7]. Embedding errors expose shorter
paths between nodes and make them available for overlay routing.
Pairs of nodes that are long sides in bad triangles may benefit from
detours; pairs that are short sides may be part of shorter detours.
These nodes can discover whether they form a long or short side
by simply computing the embedding distance to other nodes and
comparing it with the real network distance.

Existing evidence about TIVs is derived from aggregate all-to-
all latency data sets that combine many measurements [6, 2, 14, 8].
The final latency between two nodes is obtained by taking the me-
dian [2] or the minimum [3, 8, 11] of measurements performed over
long periods of time such as days or even weeks. Although these
data sets are meant to reflect the real Internet latency space, they
may fail to accurately depict the characteristics of TIVs. Consider
an experiment that measures the latencies among nodes A, B and
C at regular intervals and computes the final latency value for each
pair as the median of the measured values. In Figure 1, we show
values of latencies at three intervals,t1, t2, andt3, as well as the
median. These values are derived from real Internet experiments.
Although at no time during the measurement was there a triangle
inequality violation among A, B and C, the medians indicate oth-
erwise (Figure 1(b)). The opposite can also be true: the triple A, B
and C violates the triangle inequality at every time step, but this is
not reflected by the medians (Figure 1(c)).

Scenarios such as the ones above reveal the potential pitfalls of
reasoning about triangle inequality violations with aggregates of
data. Some TIVs may appear when computed with median values
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Figure 2: How King works: 1) S measures the RTT to the
closest recursive name server of A, nsA, 2) S sends a recursive
query through nsA for a domain resolved by a name server of
B, nsB and measures its round-trip time, 3) the latency between
A and B is estimated as the difference between the time taken
to perform the previous two operations.

Data set Nodes (Pairs) Duration Interval
K200-1000pairs-5min 200 (1000) 24h 5min
K200-allpairs-1h 200 (all) 44h 1h
K200-allpairs-3h 200 (all) 30h 3h
K1715-allpairs-2d 1715 (all) 20d 2d

Table 1: Latency data sets. For each set we show: a) the name,
b) the total number of nodes (and the number of pairs mea-
sured), c) the duration of the experiment, and d) the average
interval between consecutive measurements of the same pair.
All data sets were collected in the period March-April 2008.

for latency but may not be long-lived enough to be significant. Fur-
ther, aggregates of data may not capture TIVs that, although do not
appear continuously during the data collection, may still be present
for enough time to be useful for an overlay routing network or to
cause embedding errors in coordinates.

3. METHODOLOGY
We use the King tool [15] to collect latency data sets that are

better suited for studying triangle inequality violations. King is
the only tool that estimates all-to-all round-trip times betweenany
hosts in the Internet.

3.1 King
King uses recursive DNS queries to estimate the latency between

two hosts in the Internet. Given the IP addresses of two nodes,
King computes the propagation delay between them as the delay
between authoritative name servers for those addresses. Figure 2
shows an example. A user located atS tries to estimate the latency
between hostsA andB. First, S measures the round-trip time to
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Figure 3: Cumulative distributions for left) Standard deviation and right) Interquartile range for three data sets

nsA, the closest recursive name server ofA. In our measurements,
to minimize the error of estimation, we ensure thatA andnsA are
in the same subnet. Then,S asksnsA to recursively resolve a name
served by a name server ofB, nsB. The latency betweennsA and
nsB is obtained by subtracting the times taken to perform the two
operations and represents an estimate of the latency between hosts
A andB.

King is the only tool that estimates all-to-all round-trip times
between any hosts in the Internet. Although King latencies have
been criticized for not being representative for latencies between
end hosts, our goal is not to verify these claims. For the purposes
of analyzing TIVs, we believe that King’s advantages outweigh its
shortcomings.

3.2 Data Sets
We collect four latency data sets of various sizes and at differ-

ent time granularities. The IP addresses of the nodes in our mea-
surements are of users participating in a file sharing application
and are available through the Vivaldi project [2]. The chosen IPs
share the same subnet with their authoritative name servers so that
better-connected DNS servers would not influence the estimates of
inter-client latencies.

We describe the properties of the data sets in Table 1. Our goals
are to collect data sets that are synchronous: all pairs of nodes are
measured at least once within a predefined time interval. The size
of the interval determines the granularity of the data set. We use
four sampling intervals: 5 minutes, 1 hour, 3 hours and 2 days. At
the beginning of each interval, we run King for all pairs of nodes in
the data set from a computer at the University of Maryland. Each
individual King measurement consists of four consecutive probes,
out of which we keep the minimum value. Collecting latencies
at smaller time granularities provides more accurate snapshots of
the latency space. However, it also limits the number of pairs that
we can measure accurately, without unnecessarily loading the DNS
servers or the source computer. Thus, for the smaller granularities,
we limit the scope of the measurement to 200 IP addresses (1000
pairs chosen at random for the 5 minute interval and all pairs for
the 1 hour and 3 hour intervals). We collect a much larger data set
(1715 IP addresses) when the granularity is increased to two days.
Because we want to capture the dynamic properties of TIVs, we
present results only for the three data sets with finer granularity.

4. LATENCY VARIABILITY
Latency variation on a path may lead to TIVs; conversely, if we

perceive latencies to be varying (when the underlying path is sta-
ble), we may assert the existence of fake TIVs. In the rest of this
section, we classify the causes of the recorded latency variations
in our measurements. We show that the chances of inferring fake
TIVs is small, and that most latency variation can be attributed to
changes in load or changes in routing.

4.1 Measurements Vary Over Time
We study how end-to-end round-trip time varies for the duration

of the measurement. We use two measures of variability: standard
deviation (STD) and interquartile range (IQR). Standard deviation
represents the variability of all data points equally, while interquar-
tile range—the difference between the 75th and 25th percentiles—
measures the variability of the 50% of points around the median.
Figure 3 shows the cumulative distributions of STD and IQR for
the three data sets with small granularities. Each point on the plots
is associated with a pair of nodes. We make the following observa-
tions:

• All distributions have long tails; each data set has a few
pairs of nodes that exhibit high variations in latency. 5%
of the pairs in K200-1000pairs-5min and K200-allpairs-3h
and 12% of the pairs in K200-allpairs-1h have standard de-
viations of more than 100ms.

• Second, in all data sets, less than 10% of the pairs have in-
terquartile ranges of more than 40ms. Combined with the
previous observation, this implies that the variability of the
latency comes mainly from the more extreme values, rather
than values closer to the median.

• Finally, the pairs in K200-allpairs-1h have higher standard
deviations than the pairs in K200-allpairs-3h. This suggests
that variability decreases with an increase in sampling inter-
val. We confirm that this is true in Section 4.2.

4.2 Causes of Variations
Determining the exact cause that leads to each latency change is

difficult. Instead, we classify the possible causes of variation into
three categories:

• Load-based causes refer to events such as queuing delay at
the routers or transient load at the DNS servers involved in
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Figure 4: Examples of latency variations between pairs of nodes: left) the latency between 66.189.0.29 and 200.31.70.18 exhibits
variations due to load; because both 1-hop and 2-hop latencies have similar variations, we conclude that it is either network load
from S to A or DNS load on A; right) the latency between 216.61.143.252 and 147.136.250.51 varies during the duration of the
measurement; besides the occasional spikes given by load, thereare long periods of time (from 1h to 8h) when the latency changes
significantly (by 70ms)

measurements. They are likely to manifest as short-duration
spikes or oscillations [16].

• Routing-based causes are path changes in the Internet deter-
mined by link or node failures or by routing changes. Al-
though routes can also oscillate, their oscillations tend to
have longer durations [17]. Thus, path changes are more
likely to trigger longer-term changes in latencies.

• Measurement-based causes depend on the parameters of the
measurement process. We consider two potential sources of
variation: the sampling interval and the time at which we
measure each sample. Since we limited the number of pairs
probed per sampling interval to avoid unnecessarily loading
DNS servers, we do not consider load on name servers a
measurement-based cause of variation.

Routing-based and Load-based causes.
We focus first on the routing-based and load-based causes of

variation. We select two pairs from the K200-1000pairs-5min data
set and show their latency distributions in Figure 4. We define the
latency from the source of the measurement to the first DNS server
(nsA in Figure 2) as the 1-hop latency, and the latency from the
source tonsB throughnsA as the 2-hop latency. The final latency
is obtained by subtracting the two values. We show the distribu-
tions of 1-hop and 2-hop latencies in the top part of Figure 4. Every
point on the plot is associated with one measurement. We make the
following observations:

• the variation of latency in Figure 4(left) exhibits many short-
duration oscillations for the first 350 minutes; this is most
likely a load-based event. After 350 minutes, the latency
stops oscillating.

• the variation of latency in Figure 4(right) shows fewer os-
cillations and the latency tends to stabilize around two val-
ues (30ms and 100ms) for periods ranging from 1 hour to 12
hours; this behavior suggests a routing-based event.

• in Figure 4(left), the variations of the final, 1-hop and 2-hop
latencies follow the same trends; in Figure 4(right), the 1-hop
latencies remain constant over the first 200 intervals, while
the 2-hop latencies change; this indicates the location of the

event that causes the variation: a spike that appears on the
2-hop latency distribution but not on the 1-hop latency distri-
bution must be caused by an event that occurred on the path
between the two DNS servers.

We compute the sample correlation for the 1-hop and 2-hop la-
tencies for each pair in K200-allpairs-1h. We use this data set
because it has the smallest time granularity of the ones that con-
tain all-pair latencies and because it exhibits the greatest variability.
Figure 5(left) shows that there is less correlation among the pairs
with the top 5% interquartile ranges—these are the more variable
pairs. This indicates that the source of high variance typically lies
between the two DNS servers probed by King. It also suggests that
the source of the measurement has less impact on the variability of
the data, as we show in Section 4.2.

We also compute the average absolute difference between con-
secutive measurements for each pair in K200-allpairs-1h. The av-
erage consecutive difference estimates how a prior measurement
predicts a future one. A low average consecutive difference indi-
cates that the data varies with low frequency (and the variation is
likely due to a routing-based cause), while a high average consec-
utive difference indicates that the data varies with high frequency
(possibly due to a load-based cause). Figure 5(right) shows that, for
the pairs in the top 5% among interquartile ranges, the average con-
secutive difference is larger than for pairs in general. Indeed, we
would expect that the more variable pairs have higher average con-
secutive differences. Less than 20% of those high-variance pairs
have at most 30 ms of average consecutive differences; in those
cases the cause of the variance is most likely due to path changes.
For the remaining pairs, the variance changes rapidly; the source of
the variance in those cases is most likely due to loaded DNS servers
or high queuing delay at routers.

Measurement-based causes of variation.
Another source of variation may be the process of measurement

itself. Next we verify whether the sampling interval or the time
when we measure each sample affect the variability of the data.

We split the K200-1000pairs-5min data set intok more coarsely
grained subsets. In each subset, measurements for the same pair of
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Figure 6: Median left) standard deviations and right) in-
terquartile ranges for the pairs in each subset in the K200-
1000pairs-5min data set. Each point represents the median
value for one of the subsets. As the sampling interval decreases,
so does the median standard deviation.

nodes are collected atk × 5 minute intervals1. For example, when
usingk = 4 subsets, subseti contains all measurements taken at
sample intervalsi, i + 4, i + 8 and so on. Dividing the original
data set in this way allows us to obtaink different measurement
sets withk × 5 minute sampling intervals. All subsets appear to
start at five minute intervals over the course ofk × 5 minutes.

We compute the standard deviation (STD) and the interquartile
range (IQR) for all pairs of nodes in each of the subsets, fork = 1

(the entire data set),k = 4, k = 16, andk = 64. Figure 6 shows
the median STD and IQR. While the median STD decreases when
using sparser samples, the median IQR remains approximately the
same. We would expect that by sampling less often we are less
likely to measure unusually high values. However, such values are
always above the 75th percentile of the data, so they do not signifi-
cantly affect the IQR. Also, the median STD and IQR do not change
significantly between subsets, indicating that the time at which the
measurement starts does not affect latency variance.

This analysis highlights a trade-off between sampling rate and
the effect of rare high-latency measurements when we use a fixed
list of the most recent latency measurements. A high-frequency
sampling rate will observe more high-latency measurements, but
those measurements will pass through the list more quickly. A
low-frequency sampling rate does not observe high-latency mea-
surements very often, but when it does, they remain in the list for
a long period of time. This variation is typically mitigated through
the use of median latency measurements, but since the IQR remains
relatively stable it would also be safe to consider alternative aggre-
gates (such as the mean) restricted to the middle 50% of the data.

In conclusion, 10% of the pairs of nodes in our data sets exhibit
significant changes in latency for the duration of the measurement.

1We use 5 minute intervals because this is the granularity of K200-
1000pairs-5min (see Section 3)
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These variations are due mainly to load-based and routing-based
causes and do not come from non-optimal choices of measurement
parameters such as sampling interval or start time. Thus, we ensure
that the triangle inequality violations we study next are not mea-
surement illusions but real properties of the latencies we collected.

5. TRIANGLE INEQUALITY VARIATIONS
In this section, we study the variation of triangle inequality vi-

olations and examine how well aggregate data sets that combine
measurements taken over long periods of time capture the TIVs
that were present during the measurements.

5.1 TIVs vary over time
We count the number of triangle inequality violations after each

sampling interval in the K200-allpairs-1h data set. We consider
only those violations for which the difference between the sum of
the short sides (the detour path) and the long side (the direct path) is
larger than both 10ms and 10% of the latency of the long side. By
considering only those violations that are significant, we protect our
results from overstating the number of TIVs because of measure-
ment error. Furthermore, applications that use triangle inequality
violations to identify detour paths seek significant violations due to
the overhead of relaying along the detour path.

Figure 7 shows the number of TIVs at every hour during the
measurement. The vertical axis represents the percentage of bad
triangles after each interval, out of all triples that have been mea-
sured during the interval. We define the median TIVs to be the
TIVs computed using the median latency for each pair. The per-
centage of median TIVs is represented by the horizontal line at
1.34%. Figure 7 indicates that triangle inequality violations vary
in time. However, at no point during the measurement process is
the number of violations lower than what we would obtain using
the medians. Thus, data sets that represent multiple measurements
by their median values are conservative: they reveal fewer triangle
inequalities than there were during the measurement process. Of
course, if the lost TIVs are all short-lived, it may be beneficial not
to reveal them; for instance, we only want to use long-lived TIVs
for finding detour paths. We study next the longevity of TIVs.
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5.2 Longevity
What happens to a TIV seen at one point during the measure-

ment? Does it appear in the set of TIVs computed with medians?
We expect that, due to extreme values in latency measurements,
many triangles are short-lived—they are the effect of an unusually
high latency.

We define the longevity of a TIV as the number of intervals in
which it appears. We do not require the intervals to be consecu-
tive to avoid bias due to missing or extreme measurements. We
compute the longevity for three categories of TIVs: all TIVs seen
during the measurement (intermediate TIVs), all median TIVs, and
all TIVs seen during the measurement but not when using medi-
ans (lost TIVs). Figure 8 shows the distributions of longevities for
TIVs in the three categories.

More than 80% of all TIVs have a longevity of less than 5 hours,
while almost all (≥99%) TIVs computed with medians are seen for
more than 5 hours and more than half of them for more than a day.
Thus, using medians eliminates the short-term TIVs.

Of all TIVs, only 18% have a longevity of more than 5 hours.
However, of these long-lived TIVs, 72% (not shown in the fig-
ure) are lost—they do not appear as median TIVs. Such viola-

tions are present long enough to be able to help an overlay routing
application—by exposing a shorter detour—but are not captured
when the measurements are aggregated.

Scenarios where the medians create a TIV that does not exist,
as in Figure 1, are extremely infrequent. For example, 128 trian-
gles (0.1%) appear only when using medians and never during the
measurement. Using medians only ignores 1.5% of the TIVs that
appear more than half the time using individual latency measure-
ments.

6. ALTERNATIVE WAYS TO COMPUTE TIVS
In this section, we propose alternative ways to compute TIVs

from intermediate measurements and discuss their effects on the
performance of latency-sensitive distributed applications. Network
coordinate and positioning systems do not adapt to TIVs very well:
preserving many intermediate TIVs in the final data set will likely
provide a lower-bound on performance. On the other hand, detour
routing applications perform better when more TIVs are available.

We investigate four ways of computing the number of TIVs:
all-median, short-sides-min, long-side-min and all-min. We de-
scribedall-median in Section 5.1. Inshort-sides-min, when we
verify whether a triple forms a TIV, we consider the minimum la-
tencies for the potential short sides and the median latency for the
long side. Inlong-side-min, we use medians for the short sides and
minimum for the long side. Inall-min, as in other previous studies
[11, 3], we use the minimum latency values for every edge of the
triangle.

All-median is conservative. While it eliminates many short-term
TIVs, it also ignores 72% of the TIVs longer than five hours that ap-
pear during the measurement (§ 5.2). Intuitively, thelong-side-min
method decreases the number of TIVs that are preserved and pro-
vides a more conservative data set for evaluating latency-reducing
overlay networks. On the other hand, theshort-side-min approach
preserves more TIVs and offers a worst case scenario for network
coordinates.

We define final TIVs as the violations computed using aggre-
gates over intermediate measurements, while the kept (or preserved
TIVs) are the intermediate TIVs that are also final. Figure 9 shows
the distribution of the fraction of TIVs that are kept by each of the
four methods. Every point represents the fraction of TIVs that are
kept for each longevity value. Table 2 shows the percentage of
intermediate TIVs that are preserved and of final TIVs that never
appear during the measurement (are not intermediate TIVs).

Short-sides-min loses less long-lived TIVs thanall-median but
also keeps more short-lived TIVs. Of all TIVs longer than 5 hours,
all-median keeps 28% whileshort-sides-min keeps almost 60%.
Using either of the two methods will better reflect the performance
of latency-reducing detour routing applications.Short-sides-min
keeps more TIVs but also keeps more than 15% of triples which
never violate the triangle inequality in individual measurements.
All-median provides a more conservative estimation, biased towards
keeping long TIVs and losing short ones.

All-min andlong-side-min keep about as many short-lived TIVs
asshort-sides-min andall-median respectively. However, neither
all-min nor long-side-min keep as many of the very long-lived TIVs
as the other two methods. In conclusion, theshort-side-min method
of computing TIVs is suitable for applications that require an upper-
bound on the number of TIVs. It helps provide a lower bound on the
performance of network coordinate systems. Although used in the
evaluations of several network coordinate and positioning systems
[3, 11], all-min understates heavily the number of TIVs (it keeps
only 5%) and thus does not provide an accurate latency snapshot
for evaluation.



Method
Intermediate TIVs Intermediate TIVs w long ≤ 5 Intermediate TIVs w long > 5 Final TIVs

preserved preserved preserved that are false
all-median 4.9% 0.1% 28.1% 0.006%
all-min 23% 21.6% 30% 6%
short-sides-min 49.1% 46.6% 60.8% 15.3%
long-side-min 1.9% 0.01% 11% < 0.001%

Table 2: Percentage of TIVs preserved or added by the various methods out of the total number of TIVs in the corresponding
categories. For instance, out of all intermediate TIVs, we preserve 49.1% with the short-sides-min method. 15.3% of the TIVs
computed with short-sides-min do not appear at all during the measurement.

7. RELATED WORK
We divide previous research related to triangle inequality viola-

tions in the Internet into two parts: studies on end-to-end latency
[12, 8, 4, 9] and studies on the performance of network coordinate
systems [13, 6, 18].

Savageet al. [12] measure latencies between geographically di-
verse Internet nodes and show that more than 20% of the pairs of
nodes form long sides in TIVs. Zhenget al. [8] argue, using data
collected from the GREN research network, that TIVs are a persis-
tent, widespread and natural consequence of Internet routing poli-
cies. These studies are limited to aggregate data sets computed over
long periods of time. None of them treat TIVs as dynamic proper-
ties of the Internet. We use real-world latency data sets to show
that the number of TIVs varies with time and that by aggregating
data with medians or minimums of many measurements, we risk
missing many existing violations.

Several studies examine TIVs in relation to the impact they have
on network coordinate [2, 1] and positioning systems [3]. Because
these systems treat the Internet as a metric space—where TIVs are
prohibited—they may obtain inaccurate results. Leeet al. [13]
show how TIVs in latency data sets affect the accuracy and suit-
ability of embeddings. Wanget al. [6] identify problems caused by
TIVs in the neighbor selection process of embedding and position-
ing algorithms [2, 3] and propose a simple TIV alert that eliminates
the measurements that lead to severe violations. That triangle in-
equality violations frustrate network coordinates is not necessarily
bad. PeerWise [4] uses embedding errors in coordinate systems to
discover which pairs of nodes are more likely to benefit from a de-
tour (i.e., are long sides in TIVs) or offer a detour (i.e., are short
sides in TIVs). All of these studies treat TIVs as a static network
property and compute violations based on combinations of multi-
ple measurements. They may benefit from our observation that we
can conservatively estimate the number of TIVs with the minimum
instead of the median for the short sides of the triangles.

8. CONCLUSIONS
In this paper, we offer new evidence into the properties of In-

ternet triangle inequality violations. We show, using real world la-
tency data sets of varying sizes and granularities, that TIVs are real
and not merely illusions or artifacts of measurements. The number
of TIVs varies over time and the TIVs present during the measure-
ment are not necessarily preserved when many measurements are
aggregated using median or minimum latencies. We provide simple
guidelines for the evaluation and design of systems whose perfor-
mance depends on triangle inequality violations, such as network
coordinates or detour routing.

9. REFERENCES
[1] T. S. E. Ng and H. Zhang, “Predicting Internet network

distance with coordinates-based approaches,” inINFOCOM,
2002.

[2] F. Dabek, R. Cox, F. Kaashoek, and R. Morris, “Vivaldi: a
decentralized network coordinate system,” inSIGCOMM,
2004.

[3] B. Wong, A. Slivkins, and E. G. Sirer, “Meridian: A
lightweight network location service without virtual
coordinates,” inSIGCOMM, 2005.

[4] C. Lumezanu, R. Baden, D. Levin, N. Spring, and
B. Bhattacharjee, “Symbiotic relationships in Internet
routing overlays,” inNSDI, 2009.

[5] S. Savage, T. Anderson, A. Aggarwal, D. Becker,
N. Cardwell, A. Collins, E. Hoffman, J. Snell, A. Vahdat,
G. Voelker, and J. Zahorjan, “Detour: A case for informed
Internet routing and transport,”IEEE Micro, vol. 19, no. 1,
pp. 50–59, 1999.

[6] G. Wang, B. Zhang, and T. S. E. Ng, “Towards network
triangle inequality violation aware distributed systems,” in
IMC, 2007.

[7] C. Lumezanu, D. Levin, and N. Spring, “PeerWise discovery
and negotiation of faster paths,” inHotNets, 2007.

[8] H. Zheng, E. K. Lua, M. Pias, and T. G. Griffin, “Internet
routing policies and round-trip times,” inPassive and Active
Measurement Workshop, 2005.

[9] C. Lumezanu, R. Baden, N. Spring, and B. Bhattacharjee,
“Triangle inequality and routing policy violations in the
Internet,” inPAM, 2009.

[10] J. Stribling, “Planetlab all pairs ping,”
http://www.pdos.lcs.mit.edu/~strib/pl_app/.

[11] B. Zhang, T. E. Ng, A. Nandi, R. RIedi, P. Druschel, and
G. Wang, “Measurement-based analysis, modeling, and
synthesis of the internet delay space,” inIMC, 2006.

[12] S. Savage, A. Collins, E. Hoffman, J. Snell, and T. Anderson,
“The end-to-end effects of Internet path selection,” in
SIGCOMM, 1999.

[13] S. Lee, Z.-L. Zhang, S. Sahu, and D. Saha, “On suitability of
euclidean embedding of internet hosts,” inSigmetrics, 2006.

[14] J. Ledlie, P. Gardner, and M. Seltzer, “Network coordinates
in the wild,” in USENIX NSDI, 2007.

[15] K. Gummadi, S. Saroiu, and S. Gribble, “King: Estimating
latency between arbitrary Internet end hosts,” inIMW, 2002.

[16] V. Paxson, “End-to-end Internet packet dynamics,” inACM
Sigcomm, 1997.

[17] C. Labovitz, A. Ahuja, A. Abose, and F. Jahanian, “Delayed
Internet routing convergence,” inSIGCOMM, 2000.

[18] E. K. Lua, T. Griffin, M. Pias, H. Zheng, and J. Crowcroft,
“On the accuracy of the embeddings for Internet coordinate
systems,” inIMC, 2005.

http://www.pdos.lcs.mit.edu/~strib/pl_app/

	Introduction
	Motivation
	Methodology
	King
	Data Sets

	Latency Variability
	Measurements Vary Over Time
	Causes of Variations

	Triangle Inequality Variations
	TIVs vary over time
	Longevity

	Alternative ways to compute TIVs
	Related Work
	Conclusions
	References

