Neural Language Models

Marine Carpuat
Based on slides by Philipp Koehn (JHU)

Recap: Computation Graph X

prod)

* To build a system, we only need to: e
* Define network structure D
* Define error/loss function
* Provide data

* (and set a few more hyperparameters to control training)

e Given network structure
* Prediction is done by forward pass through graph (forward propagation)
* Training is done by backward pass through graph (back propagation)
e Based on simple matrix vector operations

* Forms the basis of neural network libraries
* Tensorflow, Pytorch, mxnet, etc.

Language Modeling

* Goal: compute the probability of a sentence or sequence of words
P(E) = P(e,e,,e; e, ec..e)

* Related task: probability of an upcoming word
Ples|e,,e,e5,€,)

* A model that computes either of these:
P(E) or P(e,|e,e,...e)
is called a language model.

Frequency

Zipt's Law

1800000

Word frequency vs. rank

1600000t
1400000¢
1200000¢
1000000¢
800000}
600000}
400000
200000
0

-

-

0

20000 40000 60000 80000 100000
Rank

Zipf’s Law

Word frequency vs. rank, log axes * Even in a very large corpus, there

7
0 will be a lot of infrequent words
10°
10°
3 10 * The same holds for many other
C o] .
S s levels of linguistic structure
S 10
10°
s * NLP/MT challenge: we need to be
250 ~ able to make predictions for things
10° 100 10° 100 10" 10° we have rarely or never seen

Rank

Toward a Neural Language Model

Figures by Philipp Koehn (JHU)

Representing Words

 “one hot vector”

dog=[©, 0,0, 0,1, 0, 0, 0.
cat =[0,0, 0, 0, 0, 0, 1, O ..
eat =[0, 1, 0, 0, 0, 0, 0, O .

* That’s a large vector! practical solutions:
* limit to most frequent words (e.g., top 20000)
* cluster words into classes
* break up rare words into subword units

_anguage Modeling with
~eedforward Neural Networks

Map each word into a
lower-dimensional real-valued space
using shared weight matrix C

(oofleNeHoNoReNoN
00000 Q00 0
coooo000O0

000008000
00,0000 000
000000000

000000000
0000000000 C
O0O@00000O0

000000000
000000000 C
O0000O00O@eO

Embedding Iayer}

OC00@00000
O0O0Q00QO00OO
O0O0OO0O0O0O00O0

Bengio et al. 2003

An Output Layer to Predict Words

* Network will output a probability for each word in the vocabulary V

e Step 1: compute a score for each word in V s=Wx+D>»
/ N
14 14
s € RIYI W e RIVIXN b €R

* Step 2: turn scores into probabilities using softmax function

p = softmax(s)

e’i

2]357

Where the probability of the j-th word in Vis p; =

Estimating Model Parameters

* Intuition: a model is good if it gives high probability to existing word
sequences

* Training examples:
» sequences of words in the [anguage of interest

* Error/loss: negative log likelihood

At the corpus level error(41) = —); log P, (E)

E In corpus

* At the word level error(1) = —log P (e;|e; ...e;_1)

_anguage Modeling with
~eedforward Neural Networks

00000000 e
00000 Q00 0
000000000

000008000
0000000060

000000000 OCO0O®@00000
000000000

OC0O0OO0OO0O0O0CO0O0

000000000
00 0Q00Q000
0O0O®@000000

000000000
000000000
[elleNoNoNoNeRoN Nol

G) G [FED

Bengio et al. 2003

Word Embeddings: a useful by-product of

neural LMs

O O
O O
O O

Word

00O
ONONONG,
©CO0OO0O0

(ONON
00O
00O

C

Embedding

00O
O 0O
00O
00O

e Words t

nat occurs in similar

contexts tend to have similar

embedo

INngs

 Embeddings capture many
usage regularities

e Useful features for many NLP

tasks

Word Embeddings

SR —— v——— WA R
swerounding _reduced
opposite .
X equal

foxrward g related

‘acnnmmr okf - particular
straight

‘Eanina PArE pack open

s growing

developing

sent
supporting
. using
speaking ‘m‘&‘n containing | prodit iy

fes’ “"E‘“’ chM' - aeoﬂm

Living .y:ivmy
acting Yy

s
educated o olding

W&el dgdeting passing
. sh nming
ing 3 d charyed equivalent M““zw Sug

hing

b v RNIINY yatwring ending

sehoyled , e

reference

lace
cover tum

start

Word Embeddings

cable
m media
aally e Eefevisigesgasomic
. entgydadeneeh,
growing leadng ¥
developing news ddd
talk
suppoxting . 2
.) e
:ontainwg prodit gy opening
¥ crﬁlaﬁg . scoxi .ny
3 '!! _giv:ing ng
’ b : aching
pexfoxming hﬁem —_—
_ ived
dgdvesing passing Proadcast
uming
dxriving plaaming

yun hit

Word Embeddings Capture Useful Regularities

Morpho-Syntactic Semantic
* Adjectives: base form vs. comparative * Word similarity/relatedness
* Nouns: singular vs. plural Semantic relations

* \erbs: present tense vs. past tense
[Mikolov et al. 2013]

* But tends to fail at distinguishing
e Synonyms vs. antonyms
* Multiple senses of a word

- X o

GlIEER UNCLE
/y QUEEN

KING

AUNT

KING

_anguage Modeling with
~eedforward Neural Networks

00000000 e
00000 Q00 0
000000000

000008000
0000000060

000000000 OCO0O®@00000
000000000

OC0O0OO0OO0O0O0CO0O0

000000000
00 0Q00Q000
0O0O®@000000

000000000
000000000
[elleNoNoNoNeRoN Nol

G) G [FED

Bengio et al. 2003

Language Modeling
with Recurrent Neural Networks

Figure by Philipp Koehn

Formalizing our Recurrent Language Model

(a) A single RNN time step (b) An unrolled RNN

tanh —»

tanh H» h,

my =M., ,

% {tanh(Wmhmt I+ Whhht—l + bh.) e 1,
t b

0 otherwise.

p; = softmax(Wysh; + bs).

Figure by Graham Neubig

Training

* Process 15t example

* Update weights with backprop
* Process 2"d example

* Update weights with backprop

* No feedback to previous history!

74

4

Training: Backpropagation Through Time

o
* Process a few examples <L |1<— <
* Backpropagate through unfolded - A
neural network
<L |1<— <=

Practical Training Issues

<s> that is an example ° COompute parameter updates based

<s> this is another </s> on a “minibatch” of examples
Input; Eoin Gkl BoaE ool Toolin * instead of using one example at a
\ v ¥ ¥ \ time

A 1 1 1 | | « .

Recurrence: 'RNN — RNN —> RNN —» RNN — RNN * More efficient
Estimate: softmax softmax softmax softmax softmax o matrix-matrix operations as Opposed

loss(| loss(||loss(| [loss(| loss(to multiple matrix-vector operations
Loss: that Is an example </s>

this is another </s> </s>

N = e e e e * Can lead to better model
Masking: o (+) o © .—vi °” f;) —><i parameters
o é ® . * middle ground between online and

Sum Time Steps: W batch training
v

Figure by Graham Neubig

Practical Training Issues:
vanishing/exploding gradients

ﬂ = tiny -g—l —small % =med. % =large

d hl') h 1 h;‘ h'%

h, = RNN (= h, = RNN (> h, = RNN —{ h, | square_err —»{?

; 2 ' :

X X X, y*

Figure 16: An example of the vanishing gradient problem.

Figure by Graham Neubig

multiple ways to work\

around this problem:
- RelLU activations help

- Dedicated RNN
architecture (Long
Short Term Memory
Networks)

. /

Aside: Long Short Term Memory Networks

® ® ©
t t
- N\ O ~N ~
T A T
A A
g /»U’THT‘L'_IHJ 70 o

Figure by Christopher Olah

What do Recurrent Language Models
Learn?

Cell sensitive to position in line:

eirossing of the Berezina lies in the fact
proved the fallacy of all the plans for
and the soundness of the only possible
and the general mass of the army

follow the enemy up. The French crowd f

g speed and all its energy was directed

d like a wounded animal and it was ilpo&s%g..
was shown not so much by the arrangements

u‘hat took place at the bridges. When the W
'S, people from Moscow and women with children
port, all--carried on by vis inertiae- -

nd into the ice-covered water and did noty

Cell that turns on inside quotes:

Figure from Karpathy 2015

What do Recurrent Language Models
Learn?

Cell that turns on inside comments and quotes:

Cell that robustly activates inside if statements:

({ c
IF_SIGPENDING) ;

L — Figure from Karpathy 2015

What do Recurrent Language Models
Learn?

* Can capture (some) long-distance dependencies

After much economic progress over the years, the country has..

The country, which has made much economic progress over the years, still has..

Deeper Models

v

v

L]
4

> 1D

&

A 4

v

Shallow

Input

Hidden
Layer

Output

v
v

¢[Je[Je[e
¢Jee o
eJe[Je[e

Deep Stacked

Input

Hidden
Layer 1

Hidden
Layer 2

Hidden
Layer 3

Output

L] L]
v

L]
4

v

v

v v 9

Deep Transition

Input

Hidden

: Layer 1

' Hidden

Layer 2

Hidden
Layer 3

Output

Neural Language Models
Summary

* A powerful tool for modeling language
e Captures generalizations over words via embeddings
* Captures some long-distance dependencies

* Build on computation graphs
* some tricks required to train and predict efficiently

* Not just a building block of Neural MT systems
* Have proved useful in statistical machine translation (Devlin et al. 2014)

