Neural Language Models
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Based on slides by Philipp Koehn (JHU)




Recap: Computation Graph X

prod )

* To build a system, we only need to: e
* Define network structure D
* Define error/loss function
* Provide data

* (and set a few more hyperparameters to control training)

e Given network structure
* Prediction is done by forward pass through graph (forward propagation)
* Training is done by backward pass through graph (back propagation)
e Based on simple matrix vector operations

* Forms the basis of neural network libraries
* Tensorflow, Pytorch, mxnet, etc.



Language Modeling

* Goal: compute the probability of a sentence or sequence of words
P(E) = P(e,e,,e; e, ec..e)

* Related task: probability of an upcoming word
Ples|e,,e,e5,€,)

* A model that computes either of these:
P(E) or P(e,|e,e,...e )
is called a language model.
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Zipf’s Law

Word frequency vs. rank, log axes * Even in a very large corpus, there
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Toward a Neural Language Model

Figures by Philipp Koehn (JHU)



Representing Words

 “one hot vector”

dog=[©, 0,0, 0,1, 0, 0, 0.
cat =[ 0,0, 0, 0, 0, 0, 1, O ..
eat =[ 0, 1, 0, 0, 0, 0, 0, O .

* That’s a large vector! practical solutions:
* limit to most frequent words (e.g., top 20000)
* cluster words into classes
* break up rare words into subword units



_anguage Modeling with
~eedforward Neural Networks

Map each word into a
lower-dimensional real-valued space
using shared weight matrix C
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An Output Layer to Predict Words

* Network will output a probability for each word in the vocabulary V

e Step 1: compute a score for each word in V s=Wx+D>»
/ N
14 14
s € RIYI W e RIVIXN b €R

* Step 2: turn scores into probabilities using softmax function

p = softmax(s)

e’i

2]357

Where the probability of the j-th word in Vis p; =



Estimating Model Parameters

* Intuition: a model is good if it gives high probability to existing word
sequences

* Training examples:
» sequences of words in the [anguage of interest

* Error/loss: negative log likelihood

At the corpus level error(41) = —); log P, (E)

E In corpus

* At the word level error(1) = —log P (e;|e; ...e;_1)



_anguage Modeling with
~eedforward Neural Networks
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Word Embeddings: a useful by-product of

neural LMs
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 Embeddings capture many
usage regularities

e Useful features for many NLP

tasks



Word Embeddings
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Word Embeddings

cable
m media
aally e Eefevisigesgasomic
. entgydadeneeh,
growing  leadng ¥
developing news ddd
talk
suppoxting . 2
. ) e
:ontainwg prodit gy opening
¥ crﬁlaﬁg . scoxi .ny
3 '!! _giv:ing ng
’ b : aching
pexfoxming hﬁem —_—
_ ived
dgdvesing passing Proadcast
uming
dxriving plaaming

yun hit



Word Embeddings Capture Useful Regularities

Morpho-Syntactic Semantic
* Adjectives: base form vs. comparative * Word similarity/relatedness
* Nouns: singular vs. plural  Semantic relations

* \erbs: present tense vs. past tense
[Mikolov et al. 2013]

* But tends to fail at distinguishing
e Synonyms vs. antonyms
* Multiple senses of a word
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_anguage Modeling with
~eedforward Neural Networks
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Language Modeling
with Recurrent Neural Networks

Figure by Philipp Koehn



Formalizing our Recurrent Language Model

(a) A single RNN time step (b) An unrolled RNN

tanh —»

tanh H» h,

my =M., ,

% {tanh(Wmhmt I+ Whhht—l + bh.) e 1,
t b

0 otherwise.

p; = softmax(Wysh; + bs).

Figure by Graham Neubig



Training

* Process 15t example

* Update weights with backprop
* Process 2"d example

* Update weights with backprop

* No feedback to previous history!

74
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Training: Backpropagation Through Time

o
* Process a few examples <L |1<— <
* Backpropagate through unfolded - A
neural network
<L |1<— <=




Practical Training Issues

<s> that is  an example ° COompute parameter updates based

<s> this is another </s> on a “minibatch” of examples
Input; Eoin Gkl BoaE ool Toolin * instead of using one example at a
\ v ¥ ¥ \ time

A 1 1 1 | | « .

Recurrence:  'RNN — RNN —> RNN —» RNN — RNN * More efficient
Estimate: softmax softmax softmax softmax softmax o matrix-matrix operations as Opposed
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Figure by Graham Neubig



Practical Training Issues:
vanishing/exploding gradients

ﬂ = tiny -g—l —small % =med. % =large
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Figure 16: An example of the vanishing gradient problem.

Figure by Graham Neubig

multiple ways to work\

around this problem:
- RelLU activations help

- Dedicated RNN
architecture (Long
Short Term Memory
Networks)
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Aside: Long Short Term Memory Networks
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Figure by Christopher Olah



What do Recurrent Language Models
Learn?

Cell sensitive to position in line:

eirossing of the Berezina lies in the fact
proved the fallacy of all the plans for
and the soundness of the only possible
and the general mass of the army

follow the enemy up. The French crowd f

g speed and all its energy was directed

d like a wounded animal and it was ilpo&s%g..
was shown not so much by the arrangements

u‘hat took place at the bridges. When the W
'S, people from Moscow and women with children
port, all--carried on by vis inertiae- -

nd into the ice-covered water and did noty

Cell that turns on inside quotes:

Figure from Karpathy 2015



What do Recurrent Language Models
Learn?

Cell that turns on inside comments and quotes:

Cell that robustly activates inside if statements:

({ c
IF_SIGPENDING) ;

L — Figure from Karpathy 2015



What do Recurrent Language Models
Learn?

* Can capture (some) long-distance dependencies

After much economic progress over the years, the country has..

The country, which has made much economic progress over the years, still has..



Deeper Models
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Neural Language Models
Summary

* A powerful tool for modeling language
e Captures generalizations over words via embeddings
* Captures some long-distance dependencies

* Build on computation graphs
* some tricks required to train and predict efficiently

* Not just a building block of Neural MT systems
* Have proved useful in statistical machine translation (Devlin et al. 2014)



