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ABSTRACT 
The emergence of low-cost thermographic cameras for 
mobile devices provides users with new practical and 
creative prospects. While recent work has investigated how 
novices use thermal cameras for energy auditing tasks in 
structured activities, open questions remain about “in the 
wild” use and the challenges or opportunities therein. To 
study these issues, we analyzed 1,000 YouTube videos 
depicting everyday uses of thermal cameras by non-
professional, novice users. We coded the videos by content 
area, identified whether common misconceptions regarding 
thermography were present, and analyzed questions within 
the comment threads. To complement this analysis, we 
conducted an online survey of the YouTube content 
creators to better understand user behaviors and 
motivations. Our findings characterize common 
thermographic use cases, extend discussions surrounding 
the challenges novices encounter, and have implications for 
the design of future thermographic systems and tools.  
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Thermography; Thermal cameras; Sustainable HCI; OSNs; 
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INTRODUCTION 
From its faux use in movies like 1987’s Predator [9] to its 
recent artistic use by the rock band 30 Seconds to Mars [7], 
thermal imaging has long captured public interest. Until 
recently, thermographic technologies—which capture and 
display patterns of heat from infrared emissions—were 

bulky, prohibitively expensive, and intended for 
professional use [23]. Today, low-cost thermal cameras are 
widely available for smartphones either as mobile 
attachments (e.g., FLIR One [35]) or, less commonly, built-
in to the phone itself (e.g., CAT S60 [38]). Small, 
inexpensive thermal sensors are also sold on “maker” 
electronic sites (e.g., Sparkfun’s FLiR Dev Kit [36]). 
Software development kits, interactive tutorials, and online 
communities have grown commensurately to share 
thermographic knowledge and create novel applications. 
Thus, what was once an expensive, expert technology is 
becoming ubiquitous with a growing, diverse userbase. 

Despite these developments, few studies have investigated 
commodity thermal camera use and adoption. While our 
earlier work [24] investigated how novices use smartphone-
based thermal cameras for energy auditing, this study was 
limited to 10 participants who followed pre-scripted 
prompts and focused on sustainability applications of 
thermography. In this paper, we extend and complement 
[24] by investigating a broader range of thermal camera use 
across a larger population. Specifically, we qualitatively 
examine “in the wild” thermal camera use as captured by 
user-generated YouTube videos. Our research questions are 
exploratory, intended to advance understanding of end-user 
behavior, and include: What activities do non-professional 
users of mobile and handheld thermal cameras engage in 
and why? What level of understanding about the technology 
is demonstrated? How might these observations inform the 
design of future thermographic technologies? 
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Figure 1: A montage video of thermal camera observations from V79 
showing (a) electrical power lines, (b) a woman with a jacket outside in the 
cold, (c) hot coffee with cream, and (d) hand washing with cold water. 
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To address these questions, we collected and qualitatively 
analyzed 1,000 thermographic videos from YouTube. Our 
research methods were informed by previous work 
[3,4,6,14], which combine structured manual search with 
qualitative coding to acquire and analyze large datasets of 
user behavior on Online Social Networks (OSNs) (e.g., 
Twitter, YouTube, Thingiverse). To extend our dataset and 
manage this increased volume, we combine manual search 
methods with semi-automated techniques common in 
information retrieval. To understand and assess YouTube-
user-provided questions about thermography and their 
answers, we also analyzed each video’s comment feeds. 
Finally, to complement the video analysis, we invited 
content creators to complete an online survey about their 
thermal camera use, motivations, and experiences posting 
videos containing thermographic content on YouTube. 

Our results show content creators were eager to learn about 
and test the limitations of their thermal cameras as well as 
their practice of thermography while engaging in a myriad 
of activities. They primarily used mobile thermal camera 
attachments, which were initially purchased for purposeful 
activities but were later used for entertainment and 
exploration. Content creators often engaged in uploading 
informal exploration videos (Figure 1)—those depicting 
their observations and play—as well as videos that focused 
on three areas: (i) building audits and urban observations, 
(ii) small electronic and software projects, and (iii) outdoor 
recreation and agricultural uses. Contrary to prior research 
(e.g., [24]), we found few instances of novice users facing 
challenges around misconceptions or misinformation about 
thermography. When such issues did arise, the YouTube 
thermography community policed and corrected invalid 
conclusions or misuses of thermal cameras.  

This work’s primary contributions include the first study of 
“in the wild” data depicting everyday uses of commodity 
thermographic technology by non-professionals and a 
characterization of common novice uses of thermal 
cameras. Additionally, a secondary contribution is our 
extension of methods used by recent qualitative studies of 
data from OSNs [3,4,6,14] through the use of a hybrid 
manual+computational approach to dataset generation. We 
conclude with discussions of this approach as well as 
novice “in the wild” uses of thermal cameras, challenges 
and misconceptions these users encounter, and implications 
for the design of future thermographic systems and tools. 
RELATED WORK 
Here we provide background on thermography, describe 
thermographic research in HCI and ubiquitous computing, 
and situate our OSN-based study method in the literature.  

Thermography Background  
Thermal technology became commercially available in the 
1960s [11] though it was expensive, bulky, and intended for 
professional use. Today, thermal cameras are relatively 
inexpensive and readily available—FLIR Systems and Seek 
Thermal, for example, each sell consumer thermal camera 

attachments for mobile devices at major retailers. These 
cameras are marketed for a broad range of applications 
including: observing wildlife, rescue operations, electrical 
inspections, energy audits, and medicine (see [37]). 

Thermal cameras work by measuring electromagnetic 
radiation emitted by objects [12]. Thermograms combine 
this data with data from a conventional, co-located camera 
and thermography involves the analysis of these 
thermograms along with contextual factors. Unlike 
traditional photography, thermography requires users to 
account for factors that impact the accuracy of the thermal 
measurements. For example, every material has a specific 
emissivity—a ratio reflecting how well an object emits heat 
compared to a perfect emitter. Cameras must be calibrated 
to each material (e.g., metal) being measured to obtain 
accurate readings. In addition, materials such as metals and 
glass reflect infrared radiation from their surroundings, 
which further complicates measurement and interpretation. 
Finally, environmental factors including ambient 
temperature and relative humidity can negatively impact 
thermographic scans. Given these complexities, 
professional thermographers are expected to complete  
certification programs (e.g., medical practitioners [29], 
building inspectors [23]) before operating thermal cameras.  

As thermal cameras become more widely available, prior 
work [23,29] has identified concerns regarding their use by 
untrained operators (e.g., misinterpreting thermal imagery, 
spreading misconceptions). For example, since thermal 
cameras allow users to “see in the dark,” they can be 
confused with light amplifying technologies associated with 
“night vision” [31]. Another common misconception, which 
we confirm through our study, is the belief that thermal 
cameras can see through objects such as walls or clothing 
[23]. Yet, thermal cameras only measure surface 
temperatures—any visible patterns depict the way heat 
moves through a subject’s internal structures to its surface 
(e.g., thermal cameras can locate wall studs as they transfer 
heat to/from the wall surface differently than the 
surrounding areas). In response, one aspect of our work 
explores these issues and concerns.  

Thermographic Research in HCI and Ubicomp 
HCI researchers are increasingly using thermal cameras to 
support novel interactions (e.g., gesture recognizers [1], 
smart surfaces [19]) and to perform domestic sensing (e.g., 
monitoring energy use [34], creating interactive city 
lighting [27]). Closest to our work is that of Mauriello et 
al., which focuses on the building science and energy 
auditing applications of thermography in HCI [21,23,24]. 
One of their recent studies asked ten novice users to explore 
their lives with a provided thermal camera attachment and 
complete semi-structured energy auditing tasks [24]. While 
this study generated insights into how minimally trained 
novice users might approach energy auditing tasks using 
thermography, a comprehensive picture of novice use of 
thermal cameras was not investigated. Characterizations of 
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“in the wild” uses of these devices would facilitate the 
development of methods and tools that support the public’s 
needs including helping them better understand the data 
they collect. In this work, we form such a characterization 
by looking at user-generated content on YouTube. 

“In the Wild” Studies via OSNs 
Recent studies have demonstrated the value of exploring 
large amounts of user-generated content qualitatively, such 
as how YouTube videos can provide insights into users’ 
natural technology interactions [3,6,14]. Moreover, these 
studies reach large swaths of end-user populations who may 
otherwise be difficult to observe (e.g., how people with 
motor impairments use touchscreen devices in their homes 
[3]). Qualitatively analyzing data from OSNs can 
nonetheless be challenging: query results can be large (i.e., 
in the thousands or more) and noisy [32]. To mitigate these 
challenges, researchers have examined a single query and 
downsampled the results [4] or conducted multiple queries 
using a systematic search strategy on highly specific topics 
[3,6]. In our work, we combine these strategies with 
computational methods to broaden our dataset, ensure high 
relevance, and reduce manual labor. 

METHOD 
Similar to previous qualitative studies of user-generated 
content on OSNs [3,6,14,26], this study was conducted in 
three stages: first, we generated a dataset containing OSN 
data relevant to our research target domain—in this case, 
videos featuring novice use of thermal cameras. Second, we 
qualitatively analyzed video content along multiple 
dimensions. Finally, we conducted an online survey 
soliciting additional information from content creators (i.e., 
the persons who posted the YouTube videos). 

Dataset Generation 
We generated our dataset using SMIDGen (Scalable, 
Mixed-Initiative Dataset Generation) [22], a hybrid 
manual+computational approach to collecting large 
amounts of relevant, OSN-sourced data. SMIDGen has four 
steps: (i) manually exploring an OSN to generate an initial 
set of keywords, queries, and data, (ii) computationally 
expanding these queries to increase domain/topic coverage, 
(iii) mixed-initiative data labeling and training to construct 
automated models, and (iv) applying these models at scale 
to generate a large, diverse, but still relevant, final dataset. 

Step 1: Creating an Initial Dataset. In July of 2017, we 
searched YouTube for the quoted string “thermal camera” 
alone and in combination with keywords representing 
common thermographic applications (e.g., “building”, 
“medical”). We manually assessed the search results to 
construct a list of general thermography-related search 
terms (Table 1). Next, we queried these terms via the 
YouTube Data API (v3) to create an initial dataset. 
Following Anthony et al. [3], we extracted the first 200 
YouTube results for each term and stored the resulting 
video URL and metadata (title, description, view counts, 

etc.). In all, our search results contained 1,400 videos, 
which was reduced to 1,092 after removing duplicates.  

Step 2: Automatically Expanding the Dataset. To identify 
keywords that YouTube content creators commonly used to 
describe their videos in addition to the keywords we 
generated, we applied two standard query expansion 
algorithms: word co-occurrence and Kullback-Leibler 
Divergence [18]. After applying these algorithms to the 
1,092 videos’ titles and descriptions in our initial dataset, 
we merged the top ten keywords from each method and 
identified 13 new, unique search terms [8]. We queried 
each new keyword alone and in combination with the initial 
keywords then extracted the top 200 videos in each query 
(similar to [3]) to capture videos our initial search may have 
missed. This process generated an expanded dataset of 
6,790 unique, potentially relevant videos. 

Step 3: Mixed-Initiative Analysis and Modeling. Keyword-
based queries are imprecise, thus a subset of these 6,790 
videos are expected to be irrelevant to the thermography 
domain. Even within the thermography domain, specific 
types of videos were off-topic for our research questions 
(e.g., product reviews or unboxing videos don’t portray 
everyday use of this technology). Manually filtering 
thousands of videos for relevance (i.e., thermal camera use) 
and topic identification (e.g., everyday use) is time- and 
labor-intensive. To accelerate these tasks, we used a mixed-
initiative approach that employed classification algorithms 
to learn what constitutes relevant and topical videos. To 
create training data for these classification algorithms, two 
research assistants iteratively coded the initial dataset from 
Step 1 using the traditional coding process in [5,15]. We 
began with a modified codebook from [4], which offered 
high-level codes typifying smartphone use videos on 
YouTube (Table 1). Video titles, descriptions, and the 
content were used as input. Each video was labeled with a 
single category and Cohen’s kappa was used to calculate 
inter-rater reliability (IRR). After three rounds of coding, 
each on 200 randomly selected videos, average IRR across 
codes was 0.69 (SD=0.09), considered good agreement 
[33]. The research assistants then divided and coded the 
remaining Step 1 data (N=1,092). 

This data was then used to train a machine learning 
classifier to complete the relevance and topic filtering tasks. 
To convert YouTube videos into a training samples, we 
featurized the videos by converting their titles and 

Step Terms 

Step 1:  
Initial Keywords 

infrared, lepton, thermal, thermal camera, thermal image, 
thermal imaging, thermography 

Step 2:  
Expanded Keywords 

breast thermography, flir lepton, flir one, flir thermal, imaging 
camera, infrared camera, infrared thermography, night vision, 
seek thermal, thermal imager 

Step 3:  
Iterated Codebook 

everyday use, product review, news coverage, unboxing, 
professional demo, advertisement, off topic 

Table 1: The search terms and training data codebook used to assemble 
our study dataset throughout SMIDGen’s four steps.  
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descriptions into a bag-of-words model and re-weighting 
terms using term-frequency, inverse-document-frequency 
(TF-IDF) to reduce the weights of common keywords, as is 
standard in information retrieval research [8]. Following an 
evaluation of several classification algorithms (see [22] for 
an in depth description of this process), we selected a 
Random Forests model to identify domain relevance (e.g., 
is the video about thermal camera use) and the Logistic 
Regression model to identify specific sub-topics (e.g., 
everyday use). Using 10-fold cross-validation, the accuracy 
of the relevance and topic classifiers were 0.91 and 0.73, 
respectively. The topic classifier’s lower accuracy is to be 
expected since the semantic similarity between in- and out-
domain videos is likely much lower than in-domain videos 
of different topics (e.g., an irrelevant video about gaming 
likely has fewer words in common with a thermography 
video than a video about unboxing a thermal camera has 
with a video about using that camera to observe heat loss in 
a home). Furthermore, to avoid accidental omission of 
“everyday use” videos, we chose to prioritize recall over 
precision to obtain potentially more diverse data from the 
topic classifier. As researchers would later review videos 
classified as “everyday use” and remove off-topic videos at 
that stage, this prioritization should not impact results. 

Step 4: Applying Classifiers and Final Dataset. Finally, we 
applied these classifiers in sequence—relevance filtering 
then topic identification—to the unlabeled data from Step 2. 
We manually validated the output of 200 randomly sampled 
videos from each classifier, finding the relevance and topic 
accuracy to be consistent with the F1 scores. Our final 
labeled dataset included 1,686 videos from 772 human-
labeled videos and 914 machine-labeled videos. From this 
set, we randomly sampled 1,000 videos for content 
analysis—a quantity we desired to ensure topic saturation.  
Qualitative Analysis of “Everyday Use” Video Content 
We qualitatively analyzed the 1,000 sampled videos to 
investigate our research questions regarding how and why 
people use thermal cameras. We coded the videos using a 
combination of inductive and deductive codes by using the 
video titles, descriptions, content, and comments. Non-
everyday use videos were coded as “off-topic” and no 
further action was taken. The codebook (Table 2) included 
16 dimensions across two topics: content areas (e.g., 
outdoor recreation, agriculture) and misconceptions (e.g., 

thermal cameras can see through walls). Videos containing 
questions (e.g., in the video description, in the comment 
feeds) were further analyzed across 4 dimensions (Table 2) 
describing the question content. When determining in what 
activities non-professional users most often engaged, we 
coded each video for its primary content (i.e., the activity 
that took up at least 80% of video’s duration).  

Two researchers randomly selected and coded 20% of the 
data (200 videos), achieving an initial IRR of 0.68 using 
Cohen’s kappa [33]. After resolving disagreements and 
clarifying the codebook, the researchers coded a new, 
randomly selected 20% sample of the data and achieved an 
average IRR of 0.75 (SD=0.27). After resolving 
differences, the remaining 600 videos were split between 
the researchers and coded independently. Ultimately 67.5% 
(675/1,000) of the videos in our dataset depicted everyday 
use, the rest being thermography videos with other focuses 
(e.g., marketing, professional services). Our findings will 
focus on the content, misconceptions, and community 
responses around these 675 videos.  

Comment Feed Analysis. We performed an additional 
analysis of the 199 (29.4%) videos that contained questions 
in either the video description or posted in the comment 
feed. For each video, we reviewed questions asked within 
the top 20 “most popular” comments. Questions from 
content categories accounting for ≥10% of the dataset (166 
videos, Table 3) were coded into four categories:  
• Content questions about the video’s subject matter (e.g., 

“Aren't hornets cold blooded?”) 

Topic Codes Sub-Topic Codes 

Content Areas 
(N=10) 

Building and Urban Environments, Health and Wellness, 
Paranormal Investigations, Electronics and Software 
Projects, Recreational Outdoor Activities and Agriculture, 
Informal Exploration, Pollution Activism, Vehicles, 
Research, Security and Emergency Services 

Misconceptions 
(N=6) 

See Through Objects, Measure Air Temperature, Measure Gases, 
Faux Filters, Faux Thermal Imagers, Camera Operation Issues 

Comments Containing Q/A 
(N=4) 

Content Questions, Technical Specifications, Follow-up 
Request, Other 

Table 2: Topic and sub-topic codes applied to analyze the content of 
“everyday use” videos.  

Categories Dataset 
(N=675) 

Average  
Duration (SD) 

Median  
Views 

Contains 
Misconceptions 

Q&A in 
Comment 

Informal 
Exploration 

46.5% 
(314) 

2.28 
(5.11) 507 9.8% 

(31/314) 
27.7% 

(87/314) 
Outdoor 
Recreation & 
Agriculture 

16.1% 
(109) 

3.24 
(7.50) 807 0.9% 

(38/109) 
34.8% 

(38/109) 

Electronic or 
Software Project 

11.9%  
(80) 

3.03 
(4.70) 368 1.2% 

(1/80) 
28.7% 
(23/80) 

Buildings and 
Urban 
Observations 

11.1%  
(75) 

3.06 
(4.11) 351 4.0% 

(3/75) 
24.0% 
(18/75) 

Vehicles 6.5%  
(44) 

1.90 
(2.48) 822 0.0% 

(0/44) 
27.2% 
(12/44) 

Paranormal 
Investigations 

2.8%  
(19) 

4.30 
(4.25) 2327 10.5% 

(2/19) 
63.1% 
(12/19) 

Emergency 
Applications 

2.1%  
(14) 

1.09 
(1.05) 637 7.14% 

(1/14) 
28.5% 
(4/14) 

Health and 
Wellness 

1.8%  
(12) 

5.19 
(7.49) 2116 0.0% 

(0/12) 
0.3%  
(4/12) 

Research 0.9%  
(6) 

1.02 
(0.80) 385 0.0% 

(0/6) 
16.6  
(1/6) 

Pollution 
Activism 

0.3%  
(2) 

0.34 
(0.03) 103 0.0% 

(0/2) 
0.0%  
(0/2) 

Table 3.  The categorical results from our coding process sorted by 
frequency; categories were exclusive. 
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• Technical specification questions about the devices being 
used or the process of making the video (e.g., “What kind 
of camera did you use?”) 

• Follow-up requests to make more videos on the same or 
different topics (e.g., “Can you do a video on the heat 
emitted by cellphone usage?”) 

• Other questions (e.g., “What is this music playing?”) 

Moreover, for each question we recorded whether an 
answer was posted and, if so, who the respondent was: the 
original poster of the video, other YouTube users, or both. 
We analyzed the correctness of responses related to 
thermographic misconceptions but not for more general 
discussions (e.g., camera costs, background music titles).   

Online Survey 
To complement our qualitative video analysis, we surveyed 
YouTube content creators with videos in our dataset. The 
online survey asked about demographic information, 
reasons for owning a thermal camera, usage patterns, 
motivations for posting videos online, and perceived 
benefits from engaging with the YouTube community. As a 
related thread of our work is focused on the role of thermal 
cameras in energy auditing, we also asked what impact, if 
any, thermal cameras had on building improvements or 
energy usage. The survey included 5pt-Likert questions, 
check-all-that-apply questions, and open-ended, short-
response questions. We contacted all unique content 
creators (N=1,023) in the final everyday use dataset 
generated in Step 4 of our dataset generation process using 
YouTube’s direct message feature and a pre-scripted macro. 
Participants who completed the survey and opted to 
voluntarily disclose contact information were entered in a 
raffle for one of two $20 Amazon gift cards. In all, 78 
participants (7.6%) completed the survey, which had an 
average completion time of approximately 8 minutes.  

VIDEO ANALYSIS FINDINGS 
We report on the most common everyday uses of thermal 
cameras shown in YouTube videos (N=675), when 
misconceptions occurred, and the information users 
exchanged in question and answer discourses. Overall, we 

found four primary uses of thermal cameras and a 
knowledgeable base of users who respond to questions and 
provided information. Quotes from content creators—
transcribed or from video descriptions—and commenters 
are attributed using a ‘V’ followed by the video number. 
Common Thermal Camera Usage Activities 
The most common thermographic videos focused on 
informal exploration (46.5%), outdoor recreation and 
agriculture (16.1%), electronic and software projects 
(11.9%), as well as building energy audits and urban 
observations (11.1%). Less frequent categories (<10% of 
the dataset) included vehicles, paranormal investigations, 
emergency applications, and health and wellness (Table 3). 
The average video duration was 2.7 minutes (SD=5.3 min), 
and most covered a single thermal observation (e.g., coffee 
brewing). Figure 2 provides examples of these categories 
and below we expand upon the four most common. 

Informal Exploration 
Nearly half of all everyday use videos (46.5%, 314/675) 
were informal explorations (314/675). Many (19.1%, 
60/314) of these videos focused on how an individual 
phenomenon appeared in infrared (e.g., nostril temperature 
when breathing, setting a ping pong ball on fire, thermal 
handprints on different surfaces, running water in sinks or 
over a person’s hands). While the subject matter was very 
diverse, some of the most common observations within this 
category included household pets (9.9%, 31/314), filming 
the user’s face (8.9%, 28/314), coffee cups and brewers 
(8.2%, 26/314), running water in sinks and bathtubs (4.4%), 
and children (2.2%, 7/314). Other interesting, but less 
common, subject matter included crushing objects in a 
hydraulic press and looking at the heat dispersion, throwing 
liquid nitrogen down a hallway, recording the effects of 
incendiary devices (e.g., model rockets, fireworks), and 
observing the extrusion process of 3D printers. Some 
content creators chose to create montage videos (14.6%, 
46/314) to call attention to the diverse phenomena they 
investigated with their thermal cameras (e.g., a user filming 
a coffee pot, then looking at an electrical appliance, then an 

 
Figure 2:  The images above portray a typical video from each coded category and the category’s percent representation in the overall dataset (N=675). 
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insulation problem in the home; Figure 1). These montages 
occasionally featured short segments related to other 
content areas (e.g., wildlife, electronics), but still 
emphasized exploration.  

Testing Technical Limits. Another common type of 
informal exploration was testing the technical limits of the 
thermal camera (11.8%, 37/314) by, for example, walking 
away from the camera to test its detection range and clarity. 
These videos typically explored how well a thermal camera 
could distinguish objects at various distances as well as the 
properties of different materials (e.g., reflectivity of glass). 
For example, one video asked, “Can a Thermal Camera See 
Through water?” (V90, Figure 3a):  

“I’m going to dip my hand down into the aquarium, right into the 
water on the top, and let’s see what happens. I’m going to 
calibrate the camera first and dip my hand in the water.  
(Dips hand in aquarium.) 
Yeah the surface of the water really reflects the heat away. But 
we can actually see my hand is heating the very surface of the 
water. […] So yeah, the thermal camera doesn’t see through 
water very well, but it is sensitive enough that you can actually 
see my hand warming up the water. Pretty cool.” (V90) 

Videos investigating if or how well a thermal camera could 
“see in the dark” were also relatively common (12.8%, 
40/314). Some experiments had targeted applications, such 
as parents attempting to observe whether their children 
were sleeping without turning on the lights or a father 
mounting his thermal camera to a UAV to find a child’s lost 
headband in the backyard at night. 

Outdoor Recreation and Agriculture 
Outdoor recreation and agriculture was the second most 
common type of video (109/675; 16.1%). This included 
passively observing farm animals and wildlife (42.2%, 
46/109) and hunting (e.g., deer, boar) (22.9%, 25/109). For 
example, the creator of V668 stated: “I see many birds 
while hiking with the thermal imager at night. Most are 
sleeping, some are nocturnal.” Other activities included 
walking dogs (9.2% 10/109), cloud watching (8.3%, 9/109), 
and beekeeping (10.0%, 11/109).    

Electronic and Software Projects 
Electronic and software projects was the third most 
common (11.9%, 80/675) and most often featured time-
lapses of how electronic devices managed heat (38.8%, 
31/80)—either heating up, cooling down, or ventilating heat 
during operation. In V801 (Figure 3b), for example, one 
content creator compared a Raspberry Pi’s internal 
temperature sensor to a thermal camera reading during a 
stress test:  

“The temperature spikes up quite quickly and you'll notice when 
it hits the 80C mark it starts to throttle the speed. [However,] 
the temperature outside on the chip is significantly higher as 
you can see.” (V801) 

Videos in this category also showed users specifically 
diagnosing issues (22.5%, 18/80) such as a missing 
component on a printed circuit board: “Now that we have a 
thermal camera we can see that the card quickly detects 
that there is no heatsink and [it] throttles itself to prevent 
damage” (V572). Finally, a few videos (18.9%, 15/80) 
demonstrated using thermal cameras as a sensor for a 
software project. Notable examples included detecting cars 
in the street and using thermal input for an interactive table. 

Building Energy Audits & Urban Observations  
Finally, building energy audits and urban observations 
comprised 11.1% (75/675) of the everyday use dataset. 
During home inspections, users either performed a general 
walkthrough of their home or focused solely on a problem 
area. They investigated large appliances (18.9%, 14/75) 
(e.g., as in V199 of a faulty radiator), hidden structures 
(14.7%, 11/75) (e.g., wall studs, insulation issues), 
electrical panels (10.7%, 8/75), air leakage around windows 
or doors (10.7%, 8/75), and moisture issues (2.7%, 2/75). 
General urban observations (e.g., train yards, people 
walking on city streets) made up 10.7% (8/75) of videos in 
this category. 

Some users (13.3%) seemed to be knowledgeable about 
how environmental factors may influence their inspections. 
For example, the user in V548 stated: “I’m out here early 
for a reason, this wall catches all the afternoon sun.” 
implying that later scans would be problematic because 
solar loading would impact measurement accuracy. 

 
Figure 3: Illustrative examples described throughout our findings: (a) exploring whether thermal cameras can see through water in V90, (b) comparing a 
Raspberry Pi’s internal temperature sensor to a handheld thermal camera reading during a stress test in V801, (c) an exterior home inspection in V351, and 
(d) describing how convection in hot coffee causes cells to be visible in thermal images in V154. 
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Similarly, in V351 the user described the importance of 
temperature differentials for proper energy audits of 
building envelopes (Figure 3c) [16]: 

“I used my new Seek Thermal camera […] to look at the exterior 
of my house when it was -19C outside.  You can see the heat 
loss of my foundation, the front door, and my 20+ year old 
single pane windows.” (V351) 

Other Video Categories 
The remaining six categories each accounted for ≤10% 
(0.2-6.5%) of our dataset and are briefly summarized here. 
For vehicles (6.5%, 44/675), videos included passive 
observation of vehicles in motion, actively diagnosing 
component issues (e.g., defective heating coils in a steering 
wheel), or engines heating up. Paranormal investigation 
videos (2.8%, 19/675) showed users exploring ghost 
sightings, tracking UFOs, and looking for Bigfoot. Health 
videos (1.8%, 12/675) focused on the potential diagnostic 
properties of thermography, such as checking body 
temperature or detecting cancerous growths near the skin’s 
surface. Finally, two videos focused on energy production 
plants and were coded as pollution activism (0.3%, 2/675). 

Misconceptions  
We found four types of misconceptions about 
thermography and three types of technical misconceptions, 
which were present in 5.3% (N=36) of the videos. For each 
video we reviewed the comment thread to determine 
whether the misconception was corrected by another 
member of the community.  

The most common thermography misconception (31.4%), 
which was likely satirical, suggested that consumer thermal 
cameras could image flatulence. These videos were strongly 
rebuked by commenters who described the inability of 
standard thermal cameras to observe gases. The second 
most common misconception (19.4%) was that thermal 
cameras could directly measure ambient air temperatures by 
viewing the effects of hot/cold air on a surface or imaging 
condensation (e.g., a person heavily exhaling in the cold 
and imaging the moisture vapor). Again, in all cases, this 
misconception was corrected in the comments section. 
Third, 13.8% of videos claimed that thermal cameras could 
“see through” clothing or walls; however, as mentioned 
previously, thermal cameras can only measure surface 
temperature. For instance, the “see through” effect of 
clothing does not actually show a naked person, but instead 
highlights areas where body heat transfers through layers of 
clothing differently—which, perhaps, is a type of “see 
through” behavior in colloquial terms. Fourth, 11.1% of 
videos exhibited confusion about IR reflection when 
imaging glass or other surfaces. Again, all these 
misconceptions were typically corrected by other YouTube 
users in the video’s comment section. 

Misconceptions about what constituted thermal imagery or 
devices also existed: 13.8% of videos were made with faux 
thermal photo filters and 5.8% described homemade “near-
infrared” thermal imaging devices that were made by 

modifying cameras (to remove infrared light filters). The 
latter was most likely a misnomer rather than an explicit 
misconception but could promote the concerns mentioned 
in [31]. Finally, a few videos (5.5%) demonstrated general 
confusion about the camera’s features (e.g., why were the 
camera’s conventional and thermal images misaligned). 

YouTube Comment Threads 
To understand the types of discussions that occur around 
thermal videos posted to YouTube, we coded all 675 videos 
for whether they contained question-and-answer 
discourse—see Table 3. Below, we focus on the 166 videos 
that had Q/A comment threads across the top four video 
categories. Across these videos, we found a total of 365 
unique questions, concerning topics such as: technical 
specifications (41.9%), content (29.9%), other (19.5%), and 
follow-up requests (8.8%,). For example, a typical technical 
specification Q/A comes from V359: 

Commenter: “Any way to calibrate the sensor? That would 
remove the “noise curtain” 

Response: “I think with the proper software, this would be more 
than possible, no idea if you can calibrate the sensor to the 
exact temperature, but there must be a way to remove the noise, 
especially at low delta-T, where it occurs most […] Convenient 
thing there is a free SDK to Therm-App owners.” (V359) 

For content, a YouTube commenter asked about the 
bubbling surface of a coffee cup (V154, Figure 3d): 

Commenter: “what is [does] this mean????” 

Response: “This is what happens in every cup of coffee. [...] 
This video demonstrates a phenomenon of convection into the 
water, i.e. interfusion of more cold layers on the water surface 
and more hot layers in the deep of the water. As a result, we can 
observe cells on the water surface in infrared frequency band.” 
(V154) 

While more than half of all questions were answered 
(58.4%), questions categorized as other—which tended to 
be less specific to the video (e.g., “what song is this?”)—
received markedly more responses than other question 
types (71.8%, Table 4). Across all questions, the original 
content creator, alone was most likely to respond (Table 4): 

Commenter: “Can you do a video showing the sky. I can't find 
any videos showing the sky. I'm a sky watcher and am thinking 
of getting a thermal device.” 

Question  
Type 

Number  
Asked  

Number 
Answered 

Who Responded 
Original  
Poster 

Other  
Poster Both 

Technical 
Specification 

41.9% 
(153/365) 

53.6%  
(82/153) 

75.6%  
(62/82) 

12.2% 
(10/82) 

12.2% 
(10/82) 

Content  29.9% 
(109/365) 

58.7%  
(64/109) 

62.5%   
(40/64) 

12.5%  
(8/64) 

25.0% 
(16/64) 

Other 19.5% 
(71/365) 

71.8%  
(51/71) 

55.9%  
(28/51) 

21.6% 
(11/51) 

22.5% 
(12/51) 

Follow-Up 
Request 

8.8% 
(32/365) 

50.0%  
(16/32) 

62.5%   
(10/16) 

18.7%  
(3/16) 

18.7%  
(3/16) 

Table 4. Comment breakdown. 
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Response: “Thermal isn't really good for skywatching unless 
you are looking at clouds. Water vapor tends to show, and it 
[is] generally very cold. Almost always black compared with 
terrestrial objects other than clouds or aircraft” (V79). 

Despite this activity, over half of the questions (58.4%) 
asked across the 166 videos remained unanswered due to 
low interaction with the community (e.g., no comments). 
ONLINE SURVEY FINDINGS 
To complement the video analyses and to better understand 
thermal camera use and motivations for sharing on 
YouTube, we invited content creators to complete an online 
survey. We contacted 1,023 unique YouTube users across 
the final video dataset and received 79 completed surveys 
(a response rate of 7.7%). As our focus is on novice use, we 
report on the 48 respondents who stated that they do not use 
a thermal camera professionally. Participants are identified 
by “P” and their survey number (e.g., the 13th survey 
respondent is identified as P13). Some percentages do not 
add to 100 due to check-all-that-apply questions. 

Demographics. All survey respondents were male (100%, 
48). Their average age was 39.3 years (Mdn=39, SD=11.0, 
range=20-68). Most respondents held an advanced degree 
(60.2%) or had completed vocational certification programs 
(10.4%); all others had a high school diploma (29.1%). 
Respondents largely reported technical professions, 
including: various kinds of engineers (29.1%), information 
technology specialists (22.9%), and security professionals 
(10.4%). There were also teachers (8.3%), students (4.1%), 
and other professionals (e.g., martial arts instructor). Most 
participants were concerned about climate change (Mdn=4, 
M=3.4, SD=3.5), rated on a 5-pt Likert scale (with ‘5’ being 
“extremely concerned”); we used this as a proxy for 
assessing eco-consciousness, as a primary use of 
thermography is energy auditing. 

Thermal Camera Use. Most respondents used thermal 
camera smartphone attachments (52.0%)—specifically the 
FLIR ONE (33.3%) and the Seek Thermal Compact 
(18.7%)—or handheld thermal cameras (15.5%). Others 
used the CAT s60 smartphone with a built-in thermal 
camera (4.0%), the Lepton module for Raspberry Pi (2.0%), 
and the Tau640 for UAVs (2.0%). When asked why they 
initially acquired a thermal camera (Figure 4), almost half 
(45.8%) reported purchasing for energy auditing, followed 
by wildlife observation and outdoor recreation (33.3%), 
nighttime navigation (22.9%), security (14.5%), culinary 
(4.2%), and agriculture (2.0%). Respondents (60.4%) also 
reported purchasing their camera for “other” activities, 
including: for curiosity or fun, electronics testing, ghost 
hunting, and flying UAVs. When asked about actual post-
purchase uses, responses for security increased (+8.3%) as 
well as energy auditing (+6.2%), culinary (+6.2%) and 
outdoor recreation (+2.0%) activities. However, nighttime 
navigation and agriculture use both fell (-4.1.0% and -2.0%, 
respectively). Additionally, the quantity of “other” uses also 
fell (-14.5%), but new uses from the write-in responses 

emerged (e.g., pest control, monitoring 3D printers) and 
some respondents offered reasons why they discontinued 
use. As P39 described, the thermal camera was “…not as 
good for wildlife observations as I would have thought.” 

To get a sense of how often respondents used their thermal 
cameras for these activities, we asked them to rate their use 
on a 5-pt Likert scale ordered daily to never. Most reported 
using their cameras monthly (39.5%) followed by semi-
annually (25%), weekly (18.7%), then daily (12.5%).  

Experience with YouTube. Most respondents commented 
that their reason for sharing videos on YouTube was to 
educate or share with the YouTube community (45.8%). As 
P79 said, “[I post] for views and science”. Other reasons 
included for fun (22.9%) or to show friends and family 
(8.3%) while the remaining (23%) provided non-descript or 
unclear responses (e.g., “because I can”). Many seemed to 
find the content of their videos fascinating, stating they 
shared their videos and images “to show things you can 
never see without a thermal camera” (P32). Half our survey 
respondents (50.0%) reported interacting with other users 
on YouTube including engaging in commenting, receiving 
requests for follow-up videos, and providing feedback—
which is consistent with our earlier comment analysis. Most 
participants at least somewhat agreed (58.3%) that the 
feedback they received on YouTube was valuable or 
personally beneficial, almost a third (29.1%) were neutral, 
and three (6.25%) disagreed.  

General Thoughts on Thermography. Overall, most 
respondents (97.9%) agreed that their thermal camera was a 
useful tool and half (47.9%) strongly agreed. Almost all 
participants (95.8%) agreed that their camera was helpful in 
discovering new things about the world around them and 
~half (47.9%) strongly agreed. Similarly, most participants 
(95.8%) agreed that they would continue to use their 
thermal camera in the future and half (50.0%) strongly 
agreed. Finally, 85.4% expected to continue sharing their 
thermal content on social media. 

Building Thermography. While 45.8% of respondents 
mentioned energy auditing as a specific motivation for 
purchasing a thermal camera, a higher percentage (52.0%) 
reported using their device in this way after purchase. 
Participants who used their camera for building 

 
Figure 4: Survey participant’s planned (pre-purchase) and actual 
(post-purchase) thermal camera activities in terms of percentage 
of total respondents (N=48).  
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thermography inspected a wide variety of building types, 
from single-family homes (85.7%) and multi-unit dwellings 
(28.6%) to commercial buildings (14.3%) and schools 
(8.6%). Inspection tasks included: observing air leakages 
(71.4%), insulation checks (71.4%), electrical issues 
(57.1%), moisture inspections (40.0%), or locating hidden 
structures (34.2%) such as hot water pipes or wall studs. 

When asked about why they performed thermographic 
inspections of buildings, most respondents (86.9%) cited 
saving on utility bills, energy conservation (e.g., finding 
leaks, supporting winterization efforts) or both, while the 
rest (17.1%) cited curiosity. A few participants (5.7%) 
reported using their imagery to supplement claims against 
landlords or home improvement companies. For example, 
as one respondent explained:  

“I had new windows installed that appeared to be leaking air. A 
home inspection was $450, a thermal imager was $300 and 
given that I know how it works it was an easy choice. [The] 
window installer had to do warranty work that they didn't 
initially agree with.” (P3) 

Overall, most respondents were positive about the outcomes 
of their building thermography activities. Based on their 
inspections, more than half (60% or 21 respondents) 
reported making decisions to pursue renovations or 
retrofits. All agreed that these building improvements 
directly resulted in saving money on utility bills and almost 
a third (28.6%) strongly agreed. Fewer agreed (71.4%) that 
these renovations or retrofits led to improvements in the 
building’s thermal comfort. Most (71.4%) did not agree that 
engaging in building thermography had resulted in any new 
conservation behaviors, but those that agreed believed that 
these behavior changes had led to both energy savings and 
improvements in thermal comfort. 

DISCUSSION 
Through a mixed-methods approach of analyzing OSN 
video data, comments, and an online survey with content 
creators, our work advances understanding of non-
professional use and conceptions of thermography. Below, 
we reflect on major findings, present design 
recommendations, and discuss our study methodology as 
well as key limitations. 
Novice Uses of Thermography 
Much like previous work investigating technology use via 
OSNs [3,4,6,14,26], we found that user-generated videos 
offered an otherwise inaccessible window into user 
behavior of an emerging technology. In particular, novice 
users expressed positive attitudes toward thermal cameras 
and performed diverse activities ranging from imaging pets 
and beverages to investigating electrical failures and home 
improvements (i.e., the need for or success of a repair).  

Thermal cameras provided not just a new avenue to explore 
the world but also, in some cases, supplied important 
information that helped users diagnose problems and 
support decision making. We found that 60% of survey 

respondents performed home renovations based on their 
self-diagnostics. Videos also showed users utilizing 
thermography as a visual aid during electrical and 
agricultural inspections. 

Contributing to the YouTube Thermography Community  
This work also offers insights into why these users chose to 
post videos and engage with YouTube. We found that users 
engaged in rich dialogues about thermal camera use and 
limitations through YouTube videos and comment feeds. 
Our survey and comment analysis revealed both intrinsic 
and extrinsic motivations to participate in the online 
community similar to [20,25]. Content creators reported 
posting videos to help showcase a particular thermal camera 
application, to explore a specific phenomenon, and/or to 
help teach others. Users reported enjoying sharing content 
and believed that this content would attract viewers. As P79 
summarized, he shared videos “for views and science.”  
Novice Understanding of Thermography 
Previous work uncovered concerns about the rise of 
consumer-oriented thermal cameras in terms of misuse and 
misinterpretation [23,24]. For example, in [23], while 
professional energy auditors’ emphasized the value of 
thermograms in explaining otherwise invisible phenomenon 
to homeowners  they emphasized that it required “skill and 
expertise”  to correctly interpret. Indeed, in our study we 
found misuses of thermal cameras (e.g., attempting to 
observe gases) as well as misinterpretations (e.g., using 
surface temperature as a direct proxy for air temperature). 
However, these were less frequent than expected—
comprising only 5.3% of our dataset. Moreover, we found 
that some content creators demonstrated a sophisticated 
level of understanding (e.g., describing thermal reflectivity 
of a material or the need to calibrate for emissivity). 
Nevertheless, overcoming these challenges will be critical 
to helping users avoid the negative consequences of 
incorrectly interpreting thermal data as there can be tangible 
costs to such misinterpretations. For example, a 
misdiagnosis could lead to investing in needless repairs or, 
conversely, a missed opportunity for improvement in the 
building and electronics contexts. 
Anticipating a Shift in User-base and Understanding 
Admittedly, the users in our dataset likely represent the 
most interested non-professional thermal camera users, who 
may be more confident in their activities and interpretations 
than the general population (e.g., novice thermographers 
not on YouTube). As the user population shifts from those 
having made a conscientious decision to purchase thermal 
cameras to a population with a less purposeful acquisition 
(e.g., smartphones that include thermal sensors [38]) users 
may have a less vested interest in learning about the 
technological constraints of thermal cameras. Such non-
expert, non-invested users may be more likely to encounter 
challenges and misconceptions. To support a future where 
novices have easier access to thermal camera technology, 
future applications and services should consider how to 
support users in learning thermography best practices.  
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Implications for Design 
To better support non-professional thermal camera users in 
collecting and analyzing thermography data, we offer 
several implications for the design of future thermographic 
systems and tools that will address the challenges identified 
in our findings and in prior work. 

Provide Contextually Relevant Information. Future 
applications should suggest appropriate uses of 
thermography within different contexts (e.g., the potential 
value of time lapse video in assessing heat and power 
management in electronics) and offer information related to 
common interests (e.g., why the surface of hot liquids such 
as coffee display patterns). Such dynamic context 
awareness can improve thermographic systems [2] and help 
users learn to use the technology properly. While the 
YouTube community supports this informally through 
online videos, we suggest integrating this information 
directly in the thermal user interface via interactive 
onboarding within the mobile applications that smartphone 
camera attachments (and integrated cameras) rely on.  

Encourage Exploration. While thermal camera users 
initially purchased devices for one or two purposeful 
activities (e.g., wildlife tracking, building thermography), 
users often ended up exploring a wider range of uses out of 
curiosity. Encouraging exploration would empower users to 
take full advantage of this sensing technology in diverse 
ways provided data is correctly collected. This practice 
could have further benefits, such as contributing to citizen 
science efforts by leveraging interest in wildlife tracking to 
simultaneously creating new sources of data for 
environmental and conservation purposes (e.g., locating 
bird nesting sites [13], monitoring honeybee colonies [17]).  

Anticipate and Prevent Misconceptions. Advances in 
integrating thermographic data with machine learning and 
computer vision technology [10,39] could help combat 
misconceptions, misinformation, and misuse by aiding 
users in analysis/interpretation and making the limitations 
of thermography more understandable. For example, 
automatically detecting the presence of glass windows or 
ceramic bathroom tiles in an image could bring up 
information about the reflectivity of these materials. To 
accomplish this goal, it will be important to continue 
studying thermography users and communities to identify 
common pitfalls and determine when in-situ assistance is 
applicable and desired.  

Enable Social Supports. Previous work suggested that 
novice thermal camera users might benefit from having 
social support communities available to them [24]. This 
work provides continued evidence that thermography users 
enjoy and learn from social interactions, here, in an online 
community. As with previous work emphasizing the impact 
of social supports in online communities [28,30], our work 
suggests that providing online social supports for thermal 
camera users could promote users’ enjoyment, technical 
understanding, and proper use.  

Reflections on the Dataset Generation Method 
As a secondary contribution of this work, we extend the 
methods used in [3,4,6,14,26] by incorporating machine 
learning and information retrieval algorithms into our data 
search process. This hybrid manual+computational 
approach, further detailed and evaluated in [22], provided a 
relatively fast and robust way to sample data, codified our 
process of filtering YouTube data, and allowed us to predict 
the relevance of videos in our dataset a priori. Still, there is 
room for improvement. Our automated techniques did not 
analyze the video content itself (e.g., transcripts or video 
stills) and only 67.5% of videos in our dataset were 
identified as in-domain and on-topic for “everyday use”. 
However, the 1,092 videos retrieved using our initial 
keywords, which reflects the more common methodological 
practice, only contained 187 “everyday use” videos. We 
therefore were able to increase our relevant dataset size by 
over three-fold using the hybrid method. Despite this 
success, it is likely that higher quality training labels 
combined with additional data from the video content 
would improve performance. Future work should explore 
expanding this approach by incorporating new 
computational methods to analyze video content and 
examine additional social media data (e.g., recommended 
videos, relevant channels). 
Limitations 
In addition to previously described limitations, each method 
in our mixed-methods study—video content analysis, 
comment analysis, and the online survey—has limitations. 
The video analysis is limited to the YouTube community 
and those users with the ability to upload videos. Survey 
findings are limited by self-selection bias, unverifiable 
participant claims (e.g., energy savings), and gender skew 
(all respondents were male; a similar male prevalence exists 
in prior work [23]). Finally, within the YouTube comment 
analysis, answer accuracy was only evaluated in relation to 
misconceptions or misinformation.  
CONCLUSION 
This paper presents the first qualitative, human-centered 
inquiry into “in the wild” use of thermal cameras by non-
professionals. Using a mixed-method approach, we 
analyzed 1000 YouTube videos, analyzed the question and 
answer discourses within video comments, and further 
surveyed the content creators to characterize end user-
behavior and motivations. We learned that non-professional 
users apply thermography widely: activities ranged from 
investigating domestic objects to focused investigations of 
buildings and electronics. Contrary to previous work, we 
found that users investigated technological limitations and, 
largely correctly interpreted their data. Our characterization 
of novice users and common thermographic use cases 
extends discussions surrounding novices uses and the 
challenges novices encounter which have implications for 
the design of future thermographic systems and tools. 
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