
Lecture Notes CMSC 251

Heapify(A, 1, m) // fix things up
}

}

An example of HeapSort is shown in Figure 7.4 on page 148 of CLR. We maken− 1 calls to Heapify,
each of which takesO(log n) time. So the total running time isO((n− 1) log n) = O(n log n).

Lecture 14: HeapSort Analysis and Partitioning

(Thursday, Mar 12, 1998)
Read: Chapt 7 and 8 in CLR. The algorithm we present for partitioning is different from the texts.

HeapSort Analysis: Last time we presented HeapSort. Recall that the algorithm operated by first building a
heap in a bottom-up manner, and then repeatedly extracting the maximum element from the heap and
moving it to the end of the array. One clever aspect of the data structure is that it resides inside the
array to be sorted.

We argued that the basic heap operation of Heapify runs inO(log n) time, because the heap has
O(log n) levels, and the element being sifted moves down one level of the tree after a constant amount
of work.

Based on this we can see that (1) that it takesO(n log n) time to build a heap, because we need
to apply Heapify roughlyn/2 times (to each of the internal nodes), and (2) that it takesO(n log n)
time to extract each of the maximum elements, since we need to extract roughlyn elements and each
extraction involves a constant amount of work and one Heapify. Therefore the total running time of
HeapSort isO(n log n).

Is this tight? That is, is the running timeΘ(n log n)? The answer is yes. In fact, later we will see that it
is not possible to sort faster thanΩ(n log n) time, assuming that you use comparisons, which HeapSort
does. However, it turns out that the first part of the analysis is not tight. In particular, the BuildHeap
procedure that we presented actually runs inΘ(n) time. Although in the wider context of the HeapSort
algorithm this is not significant (because the running time is dominated by theΘ(n log n) extraction
phase).

Nonetheless there are situations where you might not need to sort all of the elements. For example, it
is common to extract some unknown number of the smallest elements until some criterion (depending
on the particular application) is met. For this reason it is nice to be able to build the heap quickly since
you may not need to extract all the elements.

BuildHeap Analysis: Let us consider the running time of BuildHeap more carefully. As usual, it will make
our lives simple by making some assumptions aboutn. In this case the most convenient assumption is
thatn is of the formn = 2h+1 − 1, whereh is the height of the tree. The reason is that a left-complete
tree with this number of nodes is a complete tree, that is, its bottommost level is full. This assumption
will save us from worrying about floors and ceilings.

With this assumption, level 0 of the tree has 1 node, level 1 has 2 nodes, and up to levelh, which has
2h nodes. All the leaves reside on levelh.

Recall that when Heapify is called, the running time depends on how far an element might sift down
before the process terminates. In the worst case the element might sift down all the way to the leaf
level. Let us count the work done level by level.

At the bottommost level there are2h nodes, but we do not call Heapify on any of these so the work is
0. At the next to bottommost level there are2h−1 nodes, and each might sift down 1 level. At the 3rd
level from the bottom there are2h−2 nodes, and each might sift down 2 levels. In general, at levelj

44

Lecture Notes CMSC 251

 0 0 0 0 0 0

2*2

 0 0*8

1*4

3*1

Total work for BuildHeap

 2

 0

 1 1 1 1

 2

 3

Figure 13: Analysis of BuildHeap.

from the bottom there are2h−j nodes, and each might sift downj levels. So, if we count from bottom
to top, level-by-level, we see that the total time is proportional to

T (n) =
h∑

j=0

j2h−j =
h∑

j=0

j
2h

2j
.

If we factor out the2h term, we have

T (n) = 2h
h∑

j=0

j

2j
.

This is a sum that we have never seen before. We could try to approximate it by an integral, which
would involve integration by parts, but it turns out that there is a very cute solution to this particular
sum. We’ll digress for a moment to work it out. First, write down the infinite general geometric series,
for any constantx < 1.

∞∑
j=0

xj =
1

1− x
.

Then take the derivative of both sides with respect tox, and multiply byx giving:

∞∑
j=0

jxj−1 =
1

(1− x)2

∞∑
j=0

jxj =
x

(1− x)2
,

and if we plugx = 1/2, then voila! we have the desired formula:

∞∑
j=0

j

2j
=

1/2
(1− (1/2))2

=
1/2
1/4

= 2.

In our case we have a bounded sum, but since the infinite series is bounded, we can use it instead as an
easy approximation.

Using this we have

T (n) = 2h
h∑

j=0

j

2j
≤ 2h

∞∑
j=0

j

2j
≤ 2h · 2 = 2h+1.

Now recall thatn = 2h+1 − 1, so we haveT (n) ≤ n + 1 ∈ O(n). Clearly the algorithm takes at least
Ω(n) time (since it must access every element of the array at least once) so the total running time for
BuildHeap isΘ(n).

45

Lecture Notes CMSC 251

It is worthwhile pausing here a moment. This is the second time we have seen a relatively complex
structured algorithm, with doubly nested loops, come out with a running time ofΘ(n). (The other
example was the median algorithm, based on the sieve technique. Actually if you think deeply about
this, there is a sense in which a parallel version of BuildHeap can be viewed as operating like a sieve,
but maybe this is getting too philosophical.) Perhaps a more intuitive way to describe what is happening
here is to observe an important fact about binary trees. This is that the vast majority of nodes are at the
lowest level of the tree. For example, in a complete binary tree of heighth there is a total ofn ≈ 2h+1

nodes in total, and the number of nodes in the bottom 3 levels alone is

2h + 2h−1 + 2h−2 =
n

2
+

n

4
+

n

8
=

7n

8
= 0.875n.

That is, almost 90% of the nodes of a complete binary tree reside in the 3 lowest levels. Thus the lesson
to be learned is that when designing algorithms that operate on trees, it is important to be most efficient
on the bottommost levels of the tree (as BuildHeap is) since that is where most of the weight of the tree
resides.

Partitioning: Our next sorting algorithm is QuickSort. QuickSort is interesting in a number of respects.
First off, (as we will present it) it is arandomized algorithm, which means that it makes use of a ran-
dom number generator. We will show that in the worst case its running time isO(n2), its expected
case running time isO(n log n). Moreover, this expected case running time occurs withhigh proba-
bility, in that the probability that the algorithm takes significantly more thanO(n log n) time is rapidly
decreasing function ofn. In addition, QuickSort has a better locality-of-reference behavior than either
MergeSort or HeapSort, and thus it tends to run fastest of all three algorithms. This is how it got its
name. QuickSort (and its variants) are considered the methods of choice for most standard library
sorting algorithms.

Next time we will discuss QuickSort. Today we will discuss one aspect of QuickSort, namely the
partitioning algorithm. This is the same partitioning algorithm which we discussed when we talked
about the selection (median) problem. We are given an arrayA[p..r], and a pivot elementx chosen
from the array. Recall that the partitioning algorithm is suppose to partitionA into three subarrays:
A[p..q − 1] whose elements are all less than or equal tox, A[q] = x, andA[q + 1..r] whose elements
are greater than or equal tox. We will assume thatx is the first element of the subarray, that is,
x = A[p]. If a different rule is used for selectingx, this is easily handled by swapping this element
with A[p] before calling this procedure.

We will present a different algorithm from the one given in the text (in Section 8.1). This algorithm is
a little easier to verify the correctness, and a little easier to analyze. (But I suspect that the one in the
text is probably a bit for efficient for actual implementation.)

This algorithm works by maintaining the followinginvariant condition. The subarray is broken into
four segments. The boundaries between these items are indicated by the indicesp, q, s, andr.

(1) A[p] = x is the pivot value,

(2) A[p + 1..q] contains items that are less thanx,

(3) A[q + 1..s− 1] contains items that are greater than or equal tox, and

(4) A[s..r] contains items whose values are currently unknown.

This is illustrated below.

The algorithm begins by settingq = p ands = p+1. With each step through the algorithm we test the
value ofA[s] againstx. If A[s] ≥ x, then we can simply increments. Otherwise we incrementq, swap
A[s] with A[q], and then increments. Notice that in either case, the invariant is still maintained. In the
first case this is obvious. In the second case,A[q] now holds a value that is less thanx, andA[s − 1]
now holds a value that is greater than or equal tox. The algorithm ends whens = r, meaning that

46

Lecture Notes CMSC 251

configuration

p r

q s

 x ?
p r

q s

>= x< x

q

swap

 x

Initial configuration

Final configuration

Intermediate x < x >= x ?

Figure 14: Partitioning intermediate structure.

all of the elements have been processed. To finish things off we swapA[p] (the pivot) withA[q], and
return the value ofq. Here is the complete code:

Partition

Partition(int p, int r, array A) { // 3-way partition of A[p..r]
x = A[p] // pivot item in A[p]
q = p
for s = p+1 to r do {

if (A[s] < x) {
q = q+1
swap A[q] with A[s]

}
}
swap A[p] with A[q] // put the pivot into final position
return q // return location of pivot

}

An example is shown below.

Lecture 15: QuickSort

(Tuesday, Mar 17, 1998)
Revised:March 18. Fixed a bug in the analysis.

Read: Chapt 8 in CLR. My presentation and analysis are somewhat different than the text’s.

QuickSort and Randomized Algorithms: Early in the semester we discussed the fact that we usually study
the worst-case running times of algorithms, but sometimes average-case is a more meaningful measure.
Today we will study QuickSort. It is a worst-caseΘ(n2) algorithm, whose expected-case running time
is Θ(n log n).

We will present QuickSort as arandomizedalgorithm, that is, an algorithm which makes random
choices. There are two common types of randomized algorithms:

Monte Carlo algorithms: These algorithms may produce the wrong result, but the probability of this
occurring can be made arbitrarily small by the user. Usually the lower you make this probability,
the longer the algorithm takes to run.

47

