
Lecture Notes CMSC 251

To bound this, recall the integration formula for bounding summations (which we paraphrase
here). For any monotonically increasing functionf(x)

b−1∑
i=a

f(i) ≤
∫ b

a

f(x)dx.

The functionf(x) = x lnx is monotonically increasing, and so we have

S(n) ≤
∫ n

2

x lnxdx.

If you are a calculus macho man, then you can integrate this by parts, and if you are a calculus
wimp (like me) then you can look it up in a book of integrals∫ n

2

x lnxdx =
x2

2
lnx− x2

4

∣∣∣∣
n

x=2

=
(

n2

2
lnn− n2

4

)
− (2 ln 2− 1) ≤ n2

2
lnn− n2

4
.

This completes the summation bound, and hence the entire proof.

Summary: So even though the worst-case running time of QuickSort isΘ(n2), the average-case running
time is Θ(n log n). Although we did not show it, it turns out that this doesn’t just happen much of
the time. For large values ofn, the running time isΘ(n log n) with high probability. In order to get
Θ(n2) time the algorithm must make poor choices for the pivot at virtually every step. Poor choices are
rare, and so continuously making poor choices are very rare. You might ask, could we make QuickSort
deterministicΘ(n log n) by calling the selection algorithm to use the median as the pivot. The answer
is that this would work, but the resulting algorithm would be so slow practically that no one would ever
use it.

QuickSort (like MergeSort) is not formally an in-place sorting algorithm, because it does make use of a
recursion stack. In MergeSort and in the expected case for QuickSort, the size of the stack isO(log n),
so this is not really a problem.

QuickSort is the most popular algorithm for implementation because its actual performance (on typical
modern architectures) is so good. The reason for this stems from the fact that (unlike Heapsort) which
can make large jumps around in the array, the main work in QuickSort (in partitioning) spends most of
its time accessing elements that are close to one another. The reason it tends to outperform MergeSort
(which also has good locality of reference) is that most comparisons are made against the pivot element,
which can be stored in a register. In MergeSort we are always comparing two array elements against
each other. The most efficient versions of QuickSort uses the recursion for large subarrays, but once
the sizes of the subarray falls below some minimum size (e.g. 20) it switches to a simple iterative
algorithm, such as selection sort.

Lecture 16: Lower Bounds for Sorting

(Thursday, Mar 19, 1998)
Read: Chapt. 9 of CLR.

Review of Sorting: So far we have seen a number of algorithms for sorting a list of numbers in ascending
order. Recall that anin-placesorting algorithm is one that uses no additional array storage (however,
we allow QuickSort to be called in-place even though they need a stack of sizeO(log n) for keeping
track of the recursion). A sorting algorithm isstableif duplicate elements remain in the same relative
position after sorting.

52



Lecture Notes CMSC 251

Slow Algorithms: Include BubbleSort, InsertionSort, and SelectionSort. These are all simpleΘ(n2)
in-place sorting algorithms. BubbleSort and InsertionSort can be implemented as stable algo-
rithms, but SelectionSort cannot (without significant modifications).

Mergesort: Mergesort is a stableΘ(n log n) sorting algorithm. The downside is that MergeSort is
the only algorithm of the three that requires additional array storage, implying that it is not an
in-place algorithm.

Quicksort: Widely regarded as thefastestof the fast algorithms. This algorithm isO(n log n) in the
expected case, andO(n2) in the worst case. The probability that the algorithm takes asymptoti-
cally longer (assuming that the pivot is chosen randomly) is extremely small for largen. It is an
(almost) in-place sorting algorithm but is not stable.

Heapsort: Heapsort is based on a nice data structure, called aheap, which is a fast priority queue.
Elements can be inserted into a heap inO(log n) time, and the largest item can be extracted in
O(log n) time. (It is also easy to set up a heap for extracting the smallest item.) If you only want
to extract thek largest values, a heap can allow you to do this isO(n + k log n) time. It is an
in-place algorithm, but it is not stable.

Lower Bounds for Comparison-Based Sorting: Can we sort faster thanO(n log n) time? We will give an
argument that if the sorting algorithm is based solely on making comparisons between the keys in the
array, then it is impossible to sort more efficiently thanΩ(n log n) time. Such an algorithm is called a
comparison-basedsorting algorithm, and includes all of the algorithms given above.

Virtually all known general purpose sorting algorithms are based on making comparisons, so this is
not a very restrictive assumption. This does not preclude the possibility of a sorting algorithm whose
actions are determined by other types of operations, for example, consulting the individual bits of
numbers, performing arithmetic operations, indexing into an array based on arithmetic operations on
keys.

We will show that anycomparison-basedsorting algorithm for a input sequence〈a1, a2, . . . , an〉must
make at leastΩ(n log n) comparisons in the worst-case. This is still a difficult task if you think about it.
It is easy to show that a problemcanbe solved fast (just give an algorithm). But to show that a problem
cannotbe solved fast you need to reason in some way about all the possible algorithms that might ever
be written. In fact, it seems surprising that you could even hope to prove such a thing. The catch here
is that we are limited to using comparison-based algorithms, and there is a clean mathematical way of
characterizing all such algorithms.

Decision Tree Argument: In order to prove lower bounds, we need an abstract way of modeling “any pos-
sible” comparison-based sorting algorithm, we model such algorithms in terms of an abstract model
called adecision tree.

In a comparison-basedsorting algorithm only comparisons between the keys are used to determine
the action of the algorithm. Let〈a1, a2, . . . , an〉 be the input sequence. Given two elements,ai and
aj , their relative order can only be determined by the results of comparisons likeai < aj , ai ≤ aj ,
ai = aj , ai ≥ aj , andai > aj .

A decision tree is a mathematical representation of a sorting algorithm (for a fixed value ofn). Each
node of the decision tree represents a comparison made in the algorithm (e.g.,a4 : a7), and the two
branches represent the possible results, for example, the left subtree consists of the remaining compar-
isons made under the assumption thata4 ≤ a7 and the right subtree fora4 > a7. (Alternatively, one
might be labeled witha4 < a7 and the other witha4 ≥ a7.)

Observe that once we know the value ofn, then the “action” of the sorting algorithm is completely
determined by the results of its comparisons. This action may involve moving elements around in the
array, copying them to other locations in memory, performing various arithmetic operations on non-key
data. But the bottom-line is that at the end of the algorithm, the keys will be permuted in the final array

53



Lecture Notes CMSC 251

in some way. Each leaf in the decision tree is labeled with the final permutation that the algorithm
generates after making all of its comparisons.

To make this more concrete, let us assume thatn = 3, and let’s build a decision tree for SelectionSort.
Recall that the algorithm consists of two phases. The first finds the smallest element of the entire list,
and swaps it with the first element. The second finds the smaller of the remaining two items, and swaps
it with the second element. Here is the decision tree (in outline form). The first comparison is between
a1 anda2. The possible results are:

a1 ≤ a2: Thena1 is the current minimum. Next we comparea1 with a3 whose results might be either:

a1 ≤ a3: Then we know thata1 is the minimum overall, and the elements remain in their original
positions. Then we pass to phase 2 and comparea2 with a3. The possible results are:

a2 ≤ a3: Final output is〈a1, a2, a3〉.
a2 > a3: These two are swapped and the final output is〈a1, a3, a2〉.

a1 > a3: Then we know thata3 is the minimum is the overall minimum, and it is swapped with
a1. The we pass to phase 2 and comparea2 with a1 (which is now in the third position of
the array) yielding either:

a2 ≤ a1: Final output is〈a3, a2, a1〉.
a2 > a1: These two are swapped and the final output is〈a3, a1, a2〉.

a1 > a2: Thena2 is the current minimum. Next we comparea2 with a3 whose results might be either:

a2 ≤ a3: Then we know thata2 is the minimum overall. We swapa2 with a1, and then pass to
phase 2, and compare the remaining itemsa1 anda3. The possible results are:

a1 ≤ a3: Final output is〈a2, a1, a3〉.
a1 > a3: These two are swapped and the final output is〈a2, a3, a1〉.

a2 > a3: Then we know thata3 is the minimum is the overall minimum, and it is swapped with
a1. We pass to phase 2 and comparea2 with a1 (which is now in the third position of the
array) yielding either:

a2 ≤ a1: Final output is〈a3, a2, a1〉.
a2 > a1: These two are swapped and the final output is〈a3, a1, a2〉.

The final decision tree is shown below. Note that there are some nodes that are unreachable. For exam-
ple, in order to reach the fourth leaf from the left it must be thata1 ≤ a2 anda1 > a2, which cannot
both be true. Can you explain this? (The answer is that virtually all sorting algorithms, especially
inefficient ones like selection sort, may make comparisons that are redundant, in the sense that their
outcome has already been determined by earlier comparisons.) As you can see, converting a complex
sorting algorithm like HeapSort into a decision tree for a large value ofn will be very tedious and
complex, but I hope you are convinced by this exercise that it can be done in a simple mechanical way.

3,1,23,2,13,1,23,2,1

a2:a1
>

a2:a1
>

>

>>

>>

a2:a3

a1:a3

2,3,12,1,31,3,21,2,3

a2:a3

a1:a2

<

<<<<

<

<

a1:a3

Figure 16: Decision Tree for SelectionSort on 3 keys.

54



Lecture Notes CMSC 251

Using Decision Trees for Analyzing Sorting: Consider any sorting algorithm. LetT (n) be the maximum
number of comparisons that this algorithm makes on any input of sizen. Notice that the running time
fo the algorithm must be at least as large asT (n), since we are not counting data movement or other
computations at all. The algorithm defines a decision tree. Observe that the height of the decision
tree is exactly equal toT (n), because any path from the root to a leaf corresponds to a sequence of
comparisons made by the algorithm.

As we have seen earlier, any binary tree of heightT (n) has at most2T (n) leaves. This means that this
sorting algorithm candistinguishbetween at most2T (n) different final actions. Let’s call this quantity
A(n), for the number of different final actions the algorithm can take. Each action can be thought of as
a specific way of permuting the oringinal input to get the sorted output.

How many possible actions must any sorting algorithm distinguish between? If the input consists ofn
distinct numbers, then those numbers could be presented in any ofn! different permutations. For each
different permutation, the algorithm must “unscramble” the numbers in an essentially different way,
that is it must take a different action, implying thatA(n) ≥ n!. (Again, A(n) is usually not exactly
equal ton! because most algorithms contain some redundant unreachable leaves.)

SinceA(n) ≤ 2T (n) we have2T (n) ≥ n!, implying that

T (n) ≥ lg(n!).

We can useStirling’s approximationfor n! (see page 35 in CLR) yielding:

n! ≥
√

2πn
(n

e

)n

T (n) ≥ lg
(√

2πn
(n

e

)n)
= lg

√
2πn + n lg n− n lg e ∈ Ω(n log n).

Thus we have, the following theorem.

Theorem: Any comparison-based sorting algorithm has worst-case running timeΩ(n log n).

This can be generalized to show that theaverage-casetime to sort is alsoΩ(n log n) (by arguing about
the average height of a leaf in a tree with at leastn! leaves). The lower bound on sorting can be
generalized to provide lower bounds to a number of other problems as well.

Lecture 17: Linear Time Sorting

(Tuesday, Mar 31, 1998)
Read: Chapt. 9 of CLR.

Linear Time Sorting: Last time we presented a proof that it is not possible to sort faster thanΩ(n log n)
time assuming that the algorithm is based on making 2-way comparisons. Recall that the argument
was based on showing that any comparison-based sorting could be represented as a decision tree, the
decision tree must have at leastn! leaves, to distinguish between then! different permutations in which
the keys could be input, and hence its height must be at leastlg(n!) ∈ Ω(n lg n).

This lower bound implies that if we hope to sort numbers faster than inO(n log n) time, we cannot
do it by making comparisons alone. Today we consider the question of whether it is possible to sort
without the use of comparisons. They answer is yes, but only under very restrictive circumstances.

55


