
Lecture Notes CMSC 251

1

5
4

1

4

3

2

1

4 12 0 5
5 0 1 ?
0 3 9 1

(2)
D =

3
4

7

5 7

2 3

1

5
4

1

4

3

3

(1)

13

7 2 3 0
4 7 0 5

6

? 2 9 0
4 ? 0 ?
? 0 1 ?
0 8 ? 1

? = infinity

W =

9 1

2

4 81

4

3

2

1

13 2 3 0
3

9
5 12

2
2

1

5 0 1 6
0 3 4 1

(3)
D =

= D

Figure 29: Shortest Path Example.

Lecture 24: Floyd-Warshall Algorithm

(Thursday, April 23, 1998)
Read: Chapt 26 (up to Section 26.2) in CLR.

Floyd-Warshall Algorithm: We continue discussion of computing shortest paths between all pairs of ver-
tices in a directed graph. The Floyd-Warshall algorithm dates back to the early 60’s. Warshall was
interested in the weaker question of reachability: determine for each pair of verticesu andv, whether
u can reachv. Floyd realized that the same technique could be used to compute shortest paths with
only minor variations.

The Floyd-Warshall algorithm improves upon this algorithm, running inΘ(n3) time. The genius of the
Floyd-Warshall algorithm is in finding a different formulation for the shortest path subproblem than
the path length formulation introduced earlier. At first the formulation may seem most unnatural, but
it leads to a faster algorithm. As before, we will compute a set of matrices whose entries ared

(k)
ij . We

will change themeaningof each of these entries.

For a pathp = 〈v1, v2, . . . , v`〉 we say that the verticesv2, v3, . . . , v`−1 are theintermediate vertices

of this path. Note that a path consisting of a single edge has no intermediate vertices. We defined
(k)
ij

to be the shortest path fromi to j such that any intermediate vertices on the path are chosen from the
set{1, 2, . . . , k}. In other words, we consider a path fromi to j which either consists of the single
edge(i, j), or it visits some intermediate vertices along the way, but these intermediate can only be
chosen from{1, 2, . . . , k}. The path is free to visit any subset of these vertices, and to do so in any
order. Thus, the difference between Floyd’s formulation and the previous formulation is that here
the superscript(k) restricts the set of vertices that the path is allowed to pass through, and there the
superscript(m) restricts the number of edges the path is allowed to use. For example, in the digraph

shown in the following figure, notice how the value ofd
(k)
32 changes ask varies.

Floyd-Warshall Update Rule: How do we computed(k)
ij assuming that we have already computed the pre-

vious matrixd(k−1)? As before, there are two basic cases, depending on the ways that we might get
from vertexi to vertexj, assuming that the intermediate vertices are chosen from{1, 2, . . . , k}:

73

Lecture Notes CMSC 251

3,2d = INF
(0)

3,2d = 12
(1)

3,2d = 12
(2)

3,2d = 12
(3)

3,2
(4)

8

d = 7

Vertices 1 through k−1

kjd (k−1)
ikd (k−1)

k
(a)

(3,1,4,2)

(3,1,2)

(3,1,2)

(3,1,2)

(no path)

9

ijd (k−1)
 j i

2 2

1

41

4

3

1

Figure 30: Floyd-Warshall Formulation.

We don’t go through k at all: Then the shortest path fromi to j uses only intermediate vertices
{1, . . . , k − 1} and hence the length of the shortest path isd

(k−1)
ij .

We do go throughk: First observe that a shortest path does not pass through the same vertex twice, so
we can assume that we pass throughk exactly once. (The assumption that there are no negative
cost cycles is being used here.) That is, we go fromi to k, and then fromk to j. In order
for the overall path to be as short as possible we should take the shortest path fromi to k, and
the shortest path fromk to j. (This is the principle of optimality.) Each of these paths uses
intermediate vertices only in{1, 2, . . . , k − 1}. The length of the path isd(k−1)

ik + d
(k−1)
kj .

This suggests the following recursive rule for computingd(k):

d
(0)
ij = wij ,

d
(k)
ij = min

(
d
(k−1)
ij , d

(k−1)
ik + d

(k−1)
kj

)
for k ≥ 1.

The final answer isd(n)
ij because this allows all possible vertices as intermediate vertices. Again, we

could write a recursive program to computed
(k)
ij , but this will be prohibitively slow. Instead, we

compute it by storing the values in a table, and looking the values up as we need them. Here is the
complete algorithm. We have also included predecessor pointers,pred [i, j] for extracting the final
shortest paths. We will discuss them later.

Floyd-Warshall Algorithm

Floyd_Warshall(int n, int W[1..n, 1..n]) {
array d[1..n, 1..n]
for i = 1 to n do { // initialize

for j = 1 to n do {
d[i,j] = W[i,j]
pred[i,j] = null

}
}
for k = 1 to n do // use intermediates {1..k}

for i = 1 to n do // ...from i
for j = 1 to n do // ...to j

if (d[i,k] + d[k,j]) < d[i,j]) {
d[i,j] = d[i,k] + d[k,j] // new shorter path length
pred[i,j] = k // new path is through k

74

Lecture Notes CMSC 251

}
return d // matrix of final distances

}

Clearly the algorithm’s running time isΘ(n3). The space used by the algorithm isΘ(n2). Observe
that we deleted all references to the superscript(k) in the code. It is left as an exercise that this does
not affect the correctness of the algorithm. An example is shown in the following figure.

2

1

3

4

4

3

D =

D =

(3)

(1)

1

2

3

4

4

5

D =
(4)

1 8

1

2

3

4

1

2

3

4
D =

(2)

(0)

1

2

1

5 3

7
3

2

7
3

6
5

82

1295
6

7

1295 1

D =

9

4 4

2
8

1
2

4
8

1
4

1

1

3

4
5

1

2

19

12
1

5 0 1 6
4 7 0 5
7 2 3 0

0 8 9 1
? 0 1 ?
4 12 0 5
? 2 3 0

0 3 4 1

? = infinity

0 8 ? 1
? 0 1 ?
4 ? 0 ?
? 2 9 0

0 8 ? 1
? 0 1 ?
4 12 0 5
? 2 9 0

0 8 9 1
5 0 1 6
4 12 0 5
7 2 3 0

Figure 31: Floyd-Warshall Example.

Extracting Shortest Paths: The predecessor pointerspred [i, j] can be used to extract the final path. Here
is the idea, whenever we discover that the shortest path fromi to j passes through an intermediate
vertexk, we setpred [i, j] = k. If the shortest path does not pass through any intermediate vertex,
thenpred [i, j] = null . To find the shortest path fromi to j, we consultpred [i, j]. If it is null, then
the shortest path is just the edge(i, j). Otherwise, we recursively compute the shortest path fromi to
pred [i, j] and the shortest path frompred [i, j] to j.

Printing the Shortest Path

Path(i,j) {
if pred[i,j] = null // path is a single edge

output(i,j)
else { // path goes through pred

Path(i, pred[i,j]); // print path from i to pred
Path(pred[i,j], j); // print path from pred to j

}
}

75

Lecture Notes CMSC 251

Lecture 25: Longest Common Subsequence

(April 28, 1998)
Read: Section 16.3 in CLR.

Strings: One important area of algorithm design is the study of algorithms for character strings. There are
a number of important problems here. Among the most important has to do with efficiently searching
for a substring or generally a pattern in large piece of text. (This is what text editors and functions
like ”grep” do when you perform a search.) In many instances you do not want to find a piece of text
exactly, but rather something that is ”similar”. This arises for example in genetics research. Genetic
codes are stored as long DNA molecules. The DNA strands can be broken down into a long sequences
each of which is one of four basic types: C, G, T, A.

But exact matches rarely occur in biology because of small changes in DNA replication. Exact sub-
string search will only find exact matches. For this reason, it is of interest to compute similarities
between strings that do not match exactly. The method of string similarities should be insensitive to
random insertions and deletions of characters from some originating string. There are a number of
measures of similarity in strings. The first is theedit distance, that is, the minimum number of single
character insertions, deletions, or transpositions necessary to convert one string into another. The other,
which we will study today, is that of determining the length of the longest common subsequence.

Longest Common Subsequence:Let us think of character strings as sequences of characters. Given two
sequencesX = 〈x1, x2, . . . , xm〉 andZ = 〈z1, z2, . . . , zk〉, we say thatZ is a subsequenceof X if
there is a strictly increasing sequence ofk indices〈i1, i2, . . . , ik〉 (1 ≤ i1 < i2 < . . . < ik ≤ n) such
thatZ = 〈Xi1 , Xi2 , . . . , Xik

〉. For example, letX = 〈ABRACADABRA〉 and letZ = 〈AADAA〉,
thenZ is a subsequence ofX.

Given two stringsX andY , the longest common subsequenceof X andY is a longest sequenceZ
which is both a subsequence ofX andY .

For example, letX be as before and letY = 〈YABBADABBADOO〉. Then the longest common
subsequence isZ = 〈ABADABA〉.
The Longest Common Subsequence Problem (LCS) is the following. Given two sequencesX =
〈x1, . . . , xm〉 andY = 〈y1, . . . , yn〉 determine a longest common subsequence. Note that it is not
always unique. For example the LCS of〈ABC〉 and〈BAC〉 is either〈AC〉 or 〈BC〉.

Dynamic Programming Solution: The simple brute-force solution to the problem would be to try all pos-
sible subsequences from one string, and search for matches in the other string, but this is hopelessly
inefficient, since there are an exponential number of possible subsequences.

Instead, we will derive a dynamic programming solution. In typical DP fashion, we need to break the
problem into smaller pieces. There are many ways to do this for strings, but it turns out for this problem
that considering all pairs ofprefixeswill suffice for us. Aprefixof a sequence is just an initial string of
values,Xi = 〈x1, x2, . . . , xi〉. X0 is the empty sequence.

The idea will be to compute the longest common subsequence for every possible pair of prefixes. Let
c[i, j] denote the length of the longest common subsequence ofXi andYj . Eventually we are interested
in c[m,n] since this will be the LCS of the two entire strings. The idea is to computec[i, j] assuming
that we already know the values ofc[i′, j′] for i′ ≤ i andj′ ≤ j (but not both equal). We begin with
some observations.

Basis: c[i, 0] = c[j, 0] = 0. If either sequence is empty, then the longest common subsequence is
empty.

76

