
Lecture Notes CMSC 251

Lecture 6: Divide and Conquer and MergeSort

(Thursday, Feb 12, 1998)
Read: Chapt. 1 (on MergeSort) and Chapt. 4 (on recurrences).

Divide and Conquer: The ancient Roman politicians understood an important principle of good algorithm
design (although they were probably not thinking about algorithms at the time). You divide your
enemies (by getting them to distrust each other) and then conquer them piece by piece. This is called
divide-and-conquer. In algorithm design, the idea is to take a problem on a large input, break the input
into smaller pieces, solve the problem on each of the small pieces, and then combine the piecewise
solutions into a global solution. But once you have broken the problem into pieces, how do you solve
these pieces? The answer is to apply divide-and-conquer to them, thus further breaking them down.
The process ends when you are left with such tiny pieces remaining (e.g. one or two items) that it is
trivial to solve them.

Summarizing, the main elements to a divide-and-conquer solution are

• Divide (the problem into a small number of pieces),

• Conquer (solve each piece, by applying divide-and-conquer recursively to it), and

• Combine (the pieces together into a global solution).

There are a huge number computational problems that can be solved efficiently using divide-and-
conquer. In fact the technique is so powerful, that when someone first suggests a problem to me,
the first question I usually ask (after what is the brute-force solution) is “does there exist a divide-and-
conquer solution for this problem?”

Divide-and-conquer algorithms are typically recursive, since the conquer part involves invoking the
same technique on a smaller subproblem. Analyzing the running times of recursive programs is rather
tricky, but we will show that there is an elegant mathematical concept, called arecurrence, which is
useful for analyzing the sort of recursive programs that naturally arise in divide-and-conquer solutions.
For the next couple of lectures we will discuss some examples of divide-and-conquer algorithms, and
how to analyze them using recurrences.

MergeSort: The first example of a divide-and-conquer algorithm which we will consider is perhaps the best
known. This is a simple and very efficient algorithm for sorting a list of numbers, calledMergeSort.
We are given an sequence ofn numbersA, which we will assume is stored in an arrayA[1 . . . n]. The
objective is to output a permutation of this sequence, sorted in increasing order. This is normally done
by permuting the elements within the arrayA.

How can we apply divide-and-conquer to sorting? Here are the major elements of the MergeSort
algorithm.

Divide: Split A down the middle into two subsequences, each of size roughlyn/2.

Conquer: Sort each subsequence (by calling MergeSort recursively on each).

Combine: Merge the two sorted subsequences into a single sorted list.

The dividing process ends when we have split the subsequences down to a single item. An sequence
of length one is trivially sorted. The key operation where all the work is done is in the combine stage,
which merges together two sorted lists into a single sorted list. It turns out that the merging process is
quite easy to implement.

The following figure gives a high-level view of the algorithm. The “divide” phase is shown on the left.
It works top-down splitting up the list into smaller sublists. The “conquer and combine” phases are
shown on the right. They work bottom-up, merging sorted lists together into larger sorted lists.

20

Lecture Notes CMSC 251

7 5 2 4 1 6 3 0 output:input:

split merge
2 4 5 7

5 7

0 1 3 6

0 3

0 1 2 3 4 5 6 7

7

1 62 4

036142575

7 5 2 4 1 6 3 0

3 01 62 47 5

036142

Figure 4: MergeSort.

MergeSort: Let’s design the algorithm top-down. We’ll assume that the procedure that merges two sorted
list is available to us. We’ll implement it later. Because the algorithm is called recursively on sublists,
in addition to passing in the array itself, we will pass in two indices, which indicate the first and last
indices of the subarray that we are to sort. The callMergeSort(A, p, r) will sort the subarray
A[p..r] and return the sorted result in the same subarray.

Here is the overview. Ifr = p, then this means that there is only one element to sort, and we may return
immediately. Otherwise (ifp < r) there are at least two elements, and we will invoke the divide-and-
conquer. We find the indexq, midway betweenp andr, namelyq = (p + r)/2 (rounded down to the
nearest integer). Then we split the array into subarraysA[p..q] andA[q + 1..r]. (We need to be careful
here. Why would it be wrong to doA[p..q − 1] andA[q..r]? Supposer = p + 1.) Call MergeSort
recursively to sort each subarray. Finally, we invoke a procedure (which we have yet to write) which
merges these two subarrays into a single sorted array.

MergeSort

MergeSort(array A, int p, int r) {
if (p < r) { // we have at least 2 items

q = (p + r)/2
MergeSort(A, p, q) // sort A[p..q]
MergeSort(A, q+1, r) // sort A[q+1..r]
Merge(A, p, q, r) // merge everything together

}
}

Merging: All that is left is to describe the procedure that merges two sorted lists.Merge(A, p, q, r)
assumes that the left subarray,A[p..q], and the right subarray,A[q + 1..r], have already been sorted.
We merge these two subarrays by copying the elements to a temporary working array calledB. For
convenience, we will assume that the arrayB has the same index rangeA, that is,B[p..r]. (One nice
thing about pseudocode, is that we can make these assumptions, and leave them up to the programmer
to figure out how to implement it.) We have to indicesi andj, that point to the current elements of
each subarray. We move the smaller element into the next position ofB (indicated by indexk) and
then increment the corresponding index (eitheri or j). When we run out of elements in one array, then
we just copy the rest of the other array intoB. Finally, we copy the entire contents ofB back intoA.
(The use of the temporary array is a bit unpleasant, but this is impossible to overcome entirely. It is one
of the shortcomings of MergeSort, compared to some of the other efficient sorting algorithms.)

In case you are not aware of C notation, the operatori++ returns the current value ofi, and then
increments this variable by one.

Merge

Merge(array A, int p, int q, int r) { // merges A[p..q] with A[q+1..r]

21

Lecture Notes CMSC 251

array B[p..r]
i = k = p // initialize pointers
j = q+1
while (i <= q and j <= r) { // while both subarrays are nonempty

if (A[i] <= A[j]) B[k++] = A[i++] // copy from left subarray
else B[k++] = A[j++] // copy from right subarray

}
while (i <= q) B[k++] = A[i++] // copy any leftover to B
while (j <= r) B[k++] = A[j++]
for i = p to r do A[i] = B[i] // copy B back to A

}

This completes the description of the algorithm. Observe that of the last two while-loops in the Merge
procedure, only one will be executed. (Do you see why?)

If you find the recursion to be a bit confusing. Go back and look at the earlier figure. Convince yourself
that as you unravel the recursion you are essentially walking through the tree (therecursion tree) shown
in the figure. As calls are made you walk down towards the leaves, and as you return you are walking
up towards the root. (We have drawn two trees in the figure, but this is just to make the distinction
between the inputs and outputs clearer.)

Discussion: One of the little tricks in improving the running time of this algorithm is to avoid the constant
copying fromA to B and back toA. This is often handled in the implementation by using two arrays,
both of equal size. At odd levels of the recursion we merge from subarrays ofA to a subarray ofB. At
even levels we merge from fromB to A. If the recursion has an odd number of levels, we may have to
do one final copy fromB back toA, but this is faster than having to do it at every level. Of course, this
only improves the constant factors; it does not change the asymptotic running time.

Another implementation trick to speed things by a constant factor is that rather than driving the divide-
and-conquer all the way down to subsequences of size 1, instead stop the dividing process when the
sequence sizes fall below constant, e.g. 20. Then invoke a simpleΘ(n2) algorithm, like insertion sort
on these small lists. Often brute force algorithms run faster on small subsequences, because they do
not have the added overhead of recursion. Note that since they are running on subsequences of size at
most 20, the running times isΘ(202) = Θ(1). Thus, this will not affect the overall asymptotic running
time.

It might seem at first glance that it should be possible to merge the lists “in-place”, without the need
for additional temporary storage. The answer is that it is, but it no one knows how to do it without
destroying the algorithm’s efficiency. It turns out that there are faster ways to sort numbers in-place,
e.g. using either HeapSort or QuickSort.

Here is a subtle but interesting point to make regarding this sorting algorithm. Suppose that in the if-
statement above, we haveA[i] = A[j]. Observe that in this case we copy from the left sublist. Would
it have mattered if instead we had copied from the right sublist? The simple answer is no—since the
elements are equal, they can appear in either order in the final sublist. However there is a subtler reason
to prefer this particular choice. Many times we are sorting data that does not have a single attribute,
but has many attributes (name, SSN, grade, etc.) Often the list may already have been sorted on one
attribute (say, name). If we sort on a second attribute (say, grade), then it would be nice if people with
same grade are still sorted by name. A sorting algorithm that has the property that equal items will
appear in the final sorted list in the same relative order that they appeared in the initial input is called a
stable sorting algorithm. This is a nice property for a sorting algorithm to have. By favoring elements
from the left sublist over the right, we will be preserving the relative order of elements. It can be shown
that as a result, MergeSort is a stable sorting algorithm. (This is not immediate, but it can be proved by
induction.)

22

Lecture Notes CMSC 251

Analysis: What remains is to analyze the running time of MergeSort. First let us consider the running time
of the procedureMerge(A, p, q, r) . Let n = r − p + 1 denote the total length of both the left
and right subarrays. What is the running time of Merge as a function ofn? The algorithm contains four
loops (none nested in the other). It is easy to see that each loop can be executed at mostn times. (If
you are a bit more careful you can actually see that all the while-loops together can only be executedn
times in total, because each execution copies one new element to the arrayB, andB only has space for
n elements.) Thus the running time to Mergen items isΘ(n). Let us write this without the asymptotic
notation, simply asn. (We’ll see later why we do this.)

Now, how do we describe the running time of the entire MergeSort algorithm? We will do this through
the use of arecurrence, that is, a function that is defined recursively in terms of itself. To avoid
circularity, the recurrence for a given value ofn is defined in terms of values that are strictly smaller
thann. Finally, a recurrence has some basis values (e.g. forn = 1), which are defined explicitly.

Let’s see how to apply this to MergeSort. LetT (n) denote the worst case running time of MergeSort on
an array of lengthn. For concreteness we could count whatever we like: number of lines of pseudocode,
number of comparisons, number of array accesses, since these will only differ by a constant factor.
Since all of the real work is done in the Merge procedure, we will count the total time spent in the
Merge procedure.

First observe that if we call MergeSort with a list containing a single element, then the running time is a
constant. Since we are ignoring constant factors, we can just writeT (n) = 1. When we call MergeSort
with a list of lengthn > 1, e.g.Merge(A, p, r) , wherer−p+1 = n, the algorithm first computes
q = b(p + r)/2c. The subarrayA[p..q], which containsq − p + 1 elements. You can verify (by some
tedious floor-ceiling arithmetic, or simpler by just trying an odd example and an even example) that is
of sizedn/2e. Thus the remaining subarrayA[q+1..r] hasbn/2c elements in it. How long does it take
to sort the left subarray? We do not know this, but becausedn/2e < n for n > 1, we can express this
asT (dn/2e). Similarly, we can express the time that it takes to sort the right subarray asT (bn/2c).
Finally, to merge both sorted lists takesn time, by the comments made above. In conclusion we have

T (n) =
{

1 if n = 1,
T (dn/2e) + T (bn/2c) + n otherwise.

Lecture 7: Recurrences

(Tuesday, Feb 17, 1998)
Read: Chapt. 4 on recurrences. Skip Section 4.4.

Divide and Conquer and Recurrences:Last time we introduced divide-and-conquer as a basic technique
for designing efficient algorithms. Recall that the basic steps in divide-and-conquer solution are (1)
divide the problem into a small number of subproblems, (2) solve each subproblem recursively, and (3)
combine the solutions to the subproblems to a global solution. We also described MergeSort, a sorting
algorithm based on divide-and-conquer.

Because divide-and-conquer is an important design technique, and because it naturally gives rise to
recursive algorithms, it is important to develop mathematical techniques for solving recurrences, either
exactly or asymptotically. To do this, we introduced the notion of arecurrence, that is, a recursively
defined function. Today we discuss a number of techniques for solving recurrences.

MergeSort Recurrence: Here is the recurrence we derived last time for MergeSort. Recall thatT (n) is the
time to run MergeSort on a list of sizen. We argued that if the list is of length 1, then the total sorting
time is a constantΘ(1). If n > 1, then we must recursively sort two sublists, one of sizedn/2e and
the other of sizebn/2c, and the nonrecursive part tookΘ(n) time for splitting the list (constant time)

23

