Due at the start of class Wednesday, September 17, 2003.

Show your work on Problems 1 to 12.

Problem 1. Convert 2457 to a base 10 number.

Problem 2. Convert 245_{10} to a base 7 number.

Problem 3. Convert 3246 to a base 4 number.

Problem 4. Convert 100011101_2 to octal.

Problem 5. Convert 11010001101001_2 to hexadecimal.

Problem 6. Convert 3720623₈ to hexadecimal.

Problem 7. Add B13A9E4CA₁₆ + 8DB9FC5A2₁₆.

Problem 8. Subtract B13A9E4CA $_{16}$ - 8DB9FC5A $_{216}$.

Problem 9. Convert 11.101₂ to decimal notation.

Problem 10. Convert $1.101101101\overline{101}_2$ to decimal notation.

Problem 11. Convert 0.45₁₀ to binary notation (with a binary point).

Problem 12. Convert $0.16666\overline{6}_{10}$ to binary notation (with a binary point).

Problem 13.

- (a) Show that if the sum of the digits of a number (in base 10) is divisible by 9 then the original number is also divisible by 9. HINT: Use mod 9.
- (b) Show that if the sum of the digits of a number in base 8 is divisible by 7 then the original number is also divisible by 7.

Problem 14.

- (a) Based on the results in Problem (13), state a rule for a hexadecimal number to be divisible by 15. No proof necessary.
- (b) Using the rule, is B13A9E4CA₁₆ divisble by 15? Show your work.
- (c) Using the rule, is 8DB9FC5A2₁₆ divisble by 15? Show your work.
- (d) Is the sum of the two values in Parts (b) and (c) divisble by 15? Why?