## Arithmetic: R-type

```
\begin{tabular}{|l|l|l|l|ll|}
\hline 000000 & 01000 & 01001 & 01010 & 00000 & 100000 \\
\hline\(b_{31-26}\) & \(b_{25-21}\) & \(b_{20-16}\) & \(b_{15-11}\) & \(b_{10-6}\) & \(b_{5-0}\) \\
\hline
\end{tabular}
opcode $rs $rt $rd shamt function
add, sub
    add $rd, $rs, $rt # R[d] <- R[s] + R[t]
    sub $rd, $rs, $rt # R[d] <- R[s] - R[t]
    R-type: 3 registers
    add or subtract 2C values
    note that there is nothing to indicate whether the registers used
                    actually contain values of the proper type
                    unlike high-level languages, there is no type;
                    the bitstrings are simply used as 2C
    opcode: 0
    function add: 32
                                    sub: 34
addu, subu
Unsigned add or subtract Ignore overflow opcode: 0 functionadd: 33
sub: 35
```


## Arithmetic: I-type

```
0001000 
b}\mp@subsup{b}{31-26}{}\quad\mp@subsup{b}{25-21}{}\quad\mp@subsup{b}{20-16}{}\quad\mp@subsup{b}{15-0}{
opcode $rs $rt immediate
addi
    addi $rt, $rs, immed # R[t] <- R[s] + immed
    I-type
    add value given in the instruction to contents of a register
    how many bits in the value?
    sign bit extended
    note $rt is destination
    what about subi?
    opcode: }
addiu
    unsigned add, without overflow
    opcode: }
```

How would we increment the value of a register by a constant?

## Arithmetic: summary

|  | R-type | I-type |
| :--- | :--- | :--- |
| Add unsigned | addu | addiu |
| Add signed | add | addi |
| Subtract unsigned | subu |  |
| Subtract signed | sub |  |

Also multiply and divide (later)

This document was created with Win2PDF available at http://www.daneprairie.com. The unregistered version of Win2PDF is for evaluation or non-commercial use only.

