
Extended Assembler

Machine language: very low level
Assembler: provides higher-level language for convenience in programming
Register mnemonics

We've already used them. The real machine deals in register numbers (0-31).
Only $0 and $31 are special in the hardware.
Other registers are used for particular purposes by software convention.

Pseudoinstructions
Instructions or formats which are not directly implemented in the hardware.
CISC would include many alternative forms of instructions.

 Large and slow instruction sets
Pseudoinstruction may be translated to 1 or more real instructions.
Pseudocomputer: more flexible than real computer, easier to program

Another layer of abstraction
Labels

Can use identifiers (names) to represent locations in the program
Assembler calculates necessary offsets

Directives
Control layout and processing of program

Pseudoinstructions: Data transfer (register)

Instruction Real instructions Semantics
Copy contents of register s to register t
mov $rt, $rs addi $rt, $rs, 0 R[t] = R[s]

Load immediate into register s
li $rs, immed R[s] = immed

The way this is translated depends on whether immed is 16 bits or 32 bits:
li $rs, small ori $rs, $0, small R[s] = small

li $rs, -small addiu $rs, $0, -small R[s] = -small

li $rs, big lui $rs, upper(big) R[s] = big

ori $rs, $rs, lower(big)

small: 16-bit value
big: 32-bit value
Note: upper(big) and lower(big) are not real instruction syntax
The assembler must figure out how to get the upper 16 bits of a 32-bit value:
upper (big) = big31-16 lower (big) = big15-0

Load address into register s
la $rs, addr lui $rs, upper(addr) R[s] = addr

ori $rs, $rs, lower(addr)

Pseudoinstructions: Data transfer (memory)

Load a word into memory with a 32-bit offset (called big).
Notice that this is normally not allowed, because only 16-bit offsets are permitted.
Instruction Real instructions Semantics
lw $rt, big($rs) lui $at, upper(big) Addr <-- R[s] + big

ori $at, $at, lower(big) R[t] <-- M4[Addr]

add $at, $rs, $at

lw $rt, 0($at)

Similar pseudo-instructions exist for sw, etc.
Other size load, store:

ld, sd doubleword
ulh, ulw, ush, usw unaligned halfword, word

Pseudoinstructions: Branch

How do we compare values in 2 registers?
Instructions for beq, bne, but not for general relational operators

result

slt $rd, $rs, $rt R[s] < R[t] 1

R[s] >= R[t] 0

Instruction Real instructions Semantics

bge $rs, $rt, LABEL slt $at, $rs, $rt if (R[s] >= R[t])

beq $at, $zero, LABEL goto LABEL

bgt $rs, $rt, LABEL slt $at, $rt, $rs if (R[s] > R[t])

bne $at, $zero, LABEL goto LABEL

ble $rs, $rt, LABEL slt $at, $rt, $rs if (R[s] <= R[t])

beq $at, $zero, LABEL goto LABEL

blt $rs, $rt, LABEL slt $at, $rs, $rt if (R[s] < R[t])

bne $at, $zero, LABEL goto LABEL

Note that LABEL must be converted to an offset from PC

What about immediate value?
bge $rs, immed, LABEL

Pseudoinstructions: Branch

Comparison to 0

Instruction Real instructions Semantics
beqz $rs, LABEL beq $rs,$zero,label if (R[s] == 0)

goto LABEL

bnez $rs, LABEL bne $rs,$zero,label if (R[s] != 0)

goto LABEL

Pseudoinstructions: Arithmetic

Instruction Real instructions Semantics
Multiply
mul $rd, $rs, $rt multu $rs, $rt # R[d] = R[s] * R[t]

mflo $rd

Multiply with overflow
mulo $rd, $rs, $rt mult $rs, $rt # R[d] = R[s] * R[t]

mflo $rd

check for overflow

Pseudoinstructions: Set

Instruction Real instructions Semantics

Set if equal:
seq $rd, $rs, $rt andi $rd, $rd, 0 # R[d] = (R[s] == R[t]) ? 1 : 0

bne $rs, $rt, next

ori $rd, $zero, 1

 next:

What's wrong with this?
Better way:

xor $rd, $rs, $rt # R[d] = ~(R[s] == R[t])

sltiu $rd, $rd, 1 # R[d] = (R[d] < 1)

Set if not equal:
sne $rd, $rs, $rt # R[d] = (R[s] != R[t]) ? 1 : 0

xor $rd, $rs, $rt # R[d] = ~(R[s] == R[t])

sltu $rd, $0, $rd # R[d] = (R[d] > 0)

Set if greater than or equal:
sge $rd, $rs, $rt # R[d] = (R[s] >= R[t]) ? 1 : 0

slt $rd, $rs, $rt # R[d] = (R[s] < R[t]) ? 1 : 0

xori $rd, $rd, 1 # R[d] = ~R[d]

Other combinations, including unsigned:
sgeu, sgt, sgtu, sle, sleu

Pseudoinstructions: logical

Instruction Real instructions Semantics
not $rd, $rs addi $at, $0, -1 # R[1] = -1

xor $rd, $rs, $at # R[d] = R[s] ^ R[1]

Better way:
not $rd, $rs nor $rd, $rs, $0 # R[d] = ~R[s]

Why does this work?
a b a | b ~(a|b) ~(0|b) ~b

0 0 0 1 1 1

0 1 1 0 0 0

1 0 1 0

1 1 1 0

Pseudoinstructions: summary

Data transfer Register mov

Constant li

Address la

Big offset lw

Branch Greater than or equal bge

Greater than bgt

Less than or equal ble

Less than blt

Equal 0 beqz

Not equal 0 bnez

Set Equal seq

Not equal sne

Greater than or equal sge

Greater than sgt

Less than or equal sle

Arithmetic Multiply mul

Multiply (overflow) mulo

Logical Complement not

Extended Assembler

Program to add two plus three

 .text

 .globl main

main:

 ori $8,$0,0x2 # put two's comp. two into register 8

 ori $9,$0,0x3 # put two's comp. three into register 9

 addu $10,$8,$9 # add register 8 and 9, put result in 10

End of file

Directives
.text defines beginning of source code
.globl identifies global label

Label (symbolic address)
main

Defining data
.data # defines beginning of data area

arr: .word 2, 4, 6 # defines array of 3 words (int)

chr: .byte 65 # defines 1 byte (char)

str: .asciiz "a string" # defines a C-type character string

This document was created with Win2PDF available at http://www.daneprairie.com.
The unregistered version of Win2PDF is for evaluation or non-commercial use only.

http://www.daneprairie.com

