
Computer organization

Levels of abstraction

Assembler Simulator Applications

C C++ Java High-level language
SOFTWARE

add lw ori Assembly language

Goal 0000 0001 0000 1001 0101 Machine instructions/Data
HARDWARE

CPU Memory I/O Functional units
CMSC311

Multiplexor Decoder Adder Components

Combinational Sequential Circuits

You are here AND OR XOR Gates

Transistors Wires Electronics

Electrons Atomic units

Gates

Gates: NOT Mr. Bill!
Basic building blocks for circuits
Implement boolean functions in hardware

Computer engineering: how to build it physically
Computer organization: how to design it logically

Combinational circuits

Output depends only on input
Sequential circuits

Output depends on input AND current state

Gates: truth tables

NOT AND OR XOR NOR NAND XNOR

a b ~a ~b a & b a | b a ^ b ~(a | b) ~(a & b) ~(a ^ b)

0 0 1 1 0 0 0 1 1 1

0 1 1 0 0 1 1 0 1 0

1 0 0 1 0 1 1 0 1 0

1 1 0 0 1 1 0 0 0 1

How many possible boolean functions of 2 variables?
Depends on number of outputs
4 possible inputs --> 16 possible outputs of 1 bit each

Gates: truth tables

Unsigned Function
Binary Name Gates

Inputs a 0 0 1 1

b 0 1 0 1

Outputs 0 0 0 0 0 FALSE

1 0 0 0 1 AND

2 0 0 1 0 a & ~b

3 0 0 1 1 a

4 0 1 0 0 ~a & b

5 0 1 0 1 b

6 0 1 1 0 XOR

7 0 1 1 1 OR

8 1 0 0 0 NOR

9 1 0 0 1 XNOR

10 1 0 1 0 ~b

11 1 0 1 1 a | ~b

12 1 1 0 0 ~a

13 1 1 0 1 ~a | b

14 1 1 1 0 NAND

15 1 1 1 1 TRUE

Gates: Inverter

Inverter: implements NOT function
Also known as "negation" or "complement"

Input: 1 bit
Output: 1 bit

Truth table: Symbol:
Input Output

x z

0 1

1 0

z = ~x

Circle indicates negation
Other notation:

z = x'

z = x

z = \x

Gates: AND

AND gate: implements AND function
Input: 2 bits
Output: 1 bit

Truth table: Symbol:
Input Output
x0 x1 z

0 0 0

0 1 0

1 0 0

1 1 1

z = x0 & x1
Other notation: Properties:

z = AND (x0, x1) symmetric: x * y = y * x

z = x0 * x1 associative: (x * y) * z = x * (y * z)

z = x0 x1
n inputs:

ANDn (x0, x1, . . . , xn) = x0 * x1 * . . . xn

Gates: OR

OR gate: implements OR function
Input: 2 bits
Output: 1 bit

Truth table: Symbol:
Input Output
x0 x1 z

0 0 0

0 1 1

1 0 1

1 1 1

z = x0 | x1
Other notation: Properties:

z = OR (x0, x1) symmetric: x + y = y + x

z = x0 + x1 associative: (x + y) + z = x + (y + z)

n inputs:
ORn (x0, x1, . . . , xn) = x0 + x1 + . . . xn

Gates: NAND

NAND gate: implements NAND (negated AND) function
Input: 2 bits
Output: 1 bit

Truth table: Symbol:
Input Output
x0 x1 z

0 0 1

0 1 1

1 0 1

1 1 0

z = x0 NAND x1
Properties:
symmetric: x NAND y = y NAND x

not associative

n inputs:
NANDn (x0, x1, . . . , xn) = NOT (x0 * x1 * . . . xn)

Gates: NOR

NOR gate: implements NOR (negated OR) function
Input: 2 bits
Output: 1 bit

Truth table: Symbol:
Input Output
x0 x1 z

0 0 1

0 1 0

1 0 0

1 1 0

z = x0 NOR x1
Properties:
symmetric: x NOR y = y NOR x

not associative

n inputs:
NORn (x0, x1, . . . , xn) = NOT (x0 + x1 + . . . xn)

Gates: XOR

XOR gate: implements exclusive-OR function
Input: 2 bits
Output: 1 bit

Truth table: Symbol:
Input Output
x0 x1 z

0 0 0

0 1 1

1 0 1

1 1 0

z = x0 ^ x1
Properties:
symmetric: x ^ y = y ^ x

associative: (x ^ y) ^ z = x ^ (y ^ z)

n inputs:
XORn (x0, x1, . . . , xn) = x0 ^ x1 ^ . . . xn

Gates: XOR properties

Truth table: Symbol:
Input Output
x0 x1 z

0 0 0

0 1 1

1 0 1

1 1 0

XOR can be expressed in terms of AND, OR, NOT:
x XOR y == (x AND (NOT y)) OR ((NOT x) AND y)

(If x is true, y must be false, and vice versa.)
x0 ^ x1 ^ . . . xn is true if the number of true values is odd,

 and false if the number of true values is even. Why?
x0 ^ x1 ^ . . . xn == (x0 + x1 + . . . xn) % 2

XOR is the same as the sum modulo 2
x ^ 0 = x XORing with 0 gives you back the same number (identity)
x ^ 1 = ~x XORing with 1 gives you the complement
x ^ x = 0 XORing a number with itself gives 0

Gates: XOR properties

More XOR tricks (amaze your friends!):
Classic swap problem (early CMSC 106)

temp = x;

x = y;

y = temp;

Using XOR:
x = x ^ y ;

y = x ^ y ;

x = x ^ y ;

Let x0 be the original value of x, y0 be the original value of y:
x = x ^ y = x0 ^ y0

y = x ^ y = (x0 ^ y0) ^ y0 Substitute for x
 = x0 ^ (y0 ^ y0) Associative property
 = x0 ^ 0 x ^ x = 0
 = x0 Identity
x = x ^ y = (x0 ^ y0) ^ x0 Substitute for x and y
 = (x0 ^ x0) ^ y0 Associative, symmetric properties
 = 0 ^ y0 x ^ x = 0
 = y0 Identity

What other operator is a less-safe way of doing this?

Gates: XNOR

XNOR gate: implements XNOR (negated exclusive-OR) function
Input: 2 bits
Output: 1 bit

Truth table: Symbol:
Input Output
x0 x1 z

0 0 1

0 1 0

1 0 0

1 1 1

z = x0 XNOR x1 = ~(x0 ^ x1)

Properties:
symmetric: x XNOR y = y XNOR x

associative: (x XNOR y) XNOR z = x XNOR (y XNOR z)

n inputs:
XNORn (x0, x1, . . . , xn) = x0 XNOR x1 XNOR . . . xn

Gates: Buffer

Buffer: implements equality function
Input: 1 bit Symbol:
Output: 1 bit

Truth table: Input Output
x z

0 0

1 1

This doesn't look very interesting at all!
There is a practical reason for it, however:

Circuits use electrical signals: 0 and 1 are represented by voltage.
If current is too low, it's hard to measure voltage accurately.
"Fan out" (number of devices) reduces

amount of current.
If the current from the AND gate is

distributed equally, then each
device gets 1/4 the current.

A buffer can be used to "boost" the current back to the right level:

The buffer (like all other gates) is an active device; it requires power input
to maintain current and voltage.

That's all EE stuff, and we're programmers. Why should we care about that?

Gates: Tri-State Buffer

A tri-state buffer acts like a valve: controls flow of current.
Input: 2 bits
Output: 1 bit simplified: active-high
Truth table: Input Output Input Output

c x z c z

0 0 Z no current 0 Z
0 1 Z 1 x

1 0 0

1 1 1 active-low
Input Output

When c = 1, the output is equal to x, otherwise there is no output. c z

Active-low: Output is x when c = 0. 0 x

1 Z

Circuits

Gates may be connected to build circuits

Valid combinational circuits
The output of a gate may only be attached to the input of another gate.

Think of this as a directed edge from output to input.
There must be no cycles in the circuit (directed graph).
Although the output of a gate may be attached to more than one input,

an input may not have two different outputs attached to it
(This would create conflicting input signals.)

Each input of a gate must come from either the output of another gate or a source.
Source: something which generates either a constant 0 or 1.

Gate delay
Output takes some small amount of time before it changes.
Information can travel at most, at the speed of light.
Gate delay limits how fast the inputs can change and

the output can still have meaningful values.

This document was created with Win2PDF available at http://www.daneprairie.com.
The unregistered version of Win2PDF is for evaluation or non-commercial use only.

http://www.daneprairie.com

