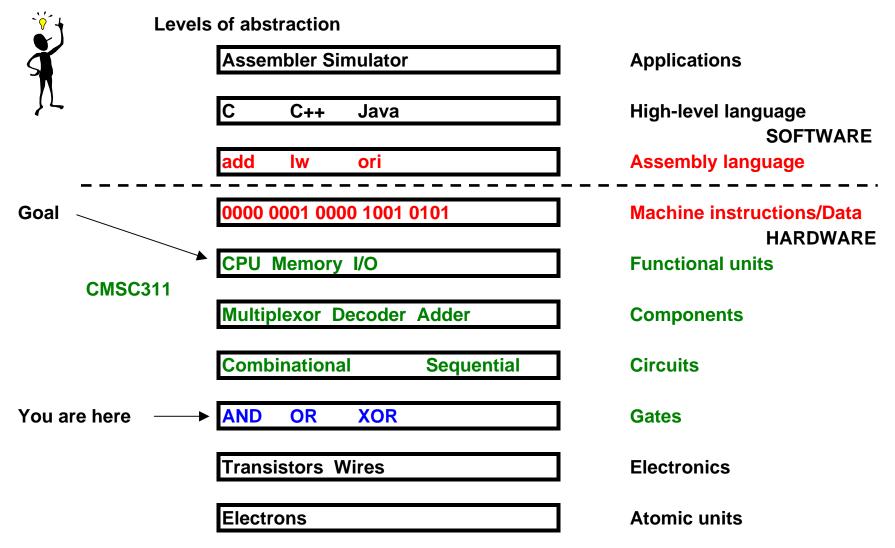
Computer organization



Gates

Gates: NOT Mr. Bill! Basic building blocks for circuits Implement boolean functions in hardware Computer engineering: how to build it physically Computer organization: how to design it logically Combinational circuits Output depends only on input

Sequential circuits

Output depends on input AND current state

		NOT		AND	OR	XOR	NOR	NAND	XNOR
a	b	~a	~b	a&b	a b	a ^ b	~(a b)	~(a & b)	~(a ^ b)
0	0	1	1	0	0	0	1	1	1
0	1	1	0	0	1	1	0	1	0
1	0	0	1	0	1	1	0	1	0
1	1	0	0	1	1	0	0	0	1

Gates: truth tables

How many possible boolean functions of 2 variables?

Depends on number of outputs

4 possible inputs --> 16 possible outputs of 1 bit each

Gates: truth tables

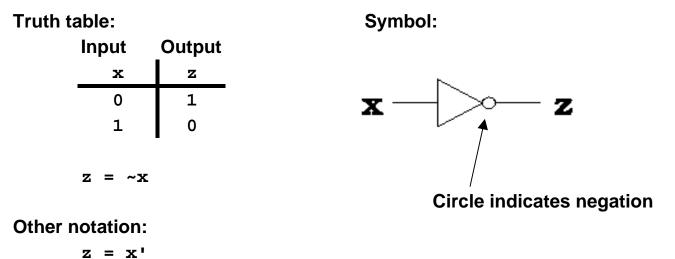
	Unsigned Binary						Function Name	Gates
Inputs		a	0	0	1	1		
	_	b	0	1	0	1		
Outputs	0		0	0	0	0	FALSE	
	1		0	0	0	1	AND	
	2		0	0	1	0	a & ~b	
	3		0	0	1	1	a	
	4		0	1	0	0	~a & b	
	5		0	1	0	1	b	
	6		0	1	1	0	XOR	
	7		0	1	1	1	OR	
	8		1	0	0	0	NOR	
	9		1	0	0	1	XNOR	
	10		1	0	1	0	~b	
	11		1	0	1	1	a ~b	
	12		1	1	0	0	~a	
	13		1	1	0	1	~a b	
	14		1	1	1	0	NAND	
	15		1	1	1	1	TRUE	

Gates: Inverter

 $z = \overline{x}$

 $z = \backslash x$

Inverter: implements NOT function Also known as "negation" or "complement" Input: 1 bit Output: 1 bit



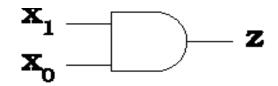
Gates: AND

AND gate: implements AND function Input: 2 bits Output: 1 bit

Truth table:

Input	Output			
x ₀	\mathbf{x}_1	Z		
0	0	0		
0	1	0		
1	0	0		
1	1	1		

Symbol:



 $\mathbf{z} = \mathbf{x}_0 \& \mathbf{x}_1$

Other notation:

Properties:

 $z = AND (x_0, x_1)$ symmetric: x * y = y * x $z = x_0 * x_1$ associative: (x * y) * z = x * (y * z) $z = x_0 x_1$

n inputs:

 AND_n (x₀, x₁, . . . , x_n) = x₀ * x₁ * . . . x_n

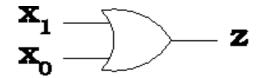
Gates: OR

OR gate: implements OR function Input: 2 bits Output: 1 bit

Truth table:

Input	Output			
\mathbf{x}_{0}	\mathbf{x}_1	Z		
0	0	0		
0	1	1		
1	0	1		
1	1	1		

Symbol:



$\mathbf{z} = \mathbf{x}_0 \mid \mathbf{x}_1$		
Other notation:	Properties:	
$z = OR (x_0, x_1)$	symmetric:	$\mathbf{x} + \mathbf{y} = \mathbf{y} + \mathbf{x}$
$z = x_0 + x_1$	associative:	(x + y) + z = x + (y + z)

n inputs:

 OR_n (x₀, x₁, . . . , x_n) = x₀ + x₁ + . . . x_n

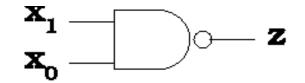
Gates: NAND

NAND gate: implements NAND (negated AND) function Input: 2 bits Output: 1 bit

Truth table:

Symbol:

Input	Output			
x ₀	\mathbf{x}_1	Z		
0	0	1		
0	1	1		
1	0	1		
1	1	0		



 $z = x_0$ NAND x_1

Properties:

symmetric: x NAND y = y NAND xnot associative

n inputs:

 $NAND_n$ (x₀, x₁, . . . , x_n) = NOT (x₀ * x₁ * . . . x_n)

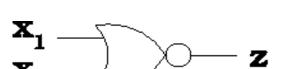
Gates: NOR

NOR gate: implements NOR (negated OR) function Input: 2 bits Output: 1 bit

Truth table:

Symbol:

Input	Output			
\mathbf{x}_{0}	\mathbf{x}_1	Z		
0	0	1		
0	1	0		
1	0	0		
1	1	0		



 $z = x_0$ NOR x_1

Properties:

symmetric: x NOR y = y NOR x not associative

n inputs:

 NOR_n (x_0 , x_1 , . . . , x_n) = NOT (x_0 + x_1 + . . . x_n)

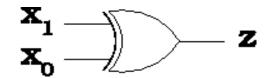
Gates: XOR

XOR gate: implements exclusive-OR function Input: 2 bits Output: 1 bit

Truth table:

Symbol:

Input	Output				
\mathbf{x}_{0}	\mathbf{x}_1	Z			
0	0	0			
0	1	1			
1	0	1			
1	1	0			



$$\mathbf{z} = \mathbf{x}_0 \wedge \mathbf{x}_1$$

Properties:

symmetric: $x \land y = y \land x$ associative: $(x \land y) \land z = x \land (y \land z)$

n inputs:

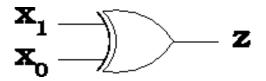
$$XOR_n$$
 (x_0 , x_1 , . . . , x_n) = $x_0 \land x_1 \land . . . x_n$

Gates: XOR properties

Truth table:

	Output
\mathbf{x}_1	Z
0	0
1	1
0	1
1	0
	0 1 0

Symbol:



XOR can be expressed in terms of AND, OR, NOT:

x XOR y == (x AND (NOT y)) OR ((NOT x) AND y)

(If x is true, y must be false, and vice versa.)

 $\mathbf{x}_{_0} ~ ^{ } ~ \mathbf{x}_{_1} ~ ^{ } ~ .$. . $\mathbf{x}_{_n} ~$ is true if the number of true values is odd,

and false if the number of true values is even. Why?

 $\mathbf{x}_0 \wedge \mathbf{x}_1 \wedge \ldots \mathbf{x}_n == (\mathbf{x}_0 + \mathbf{x}_1 + \ldots \mathbf{x}_n) \% 2$

XOR is the same as the sum modulo 2

$\mathbf{x} \wedge 0 = \mathbf{x}$	XORing with 0 gives you back the same number (identity)
$x \wedge 1 = x$	XORing with 1 gives you the complement
$\mathbf{x} \wedge \mathbf{x} = 0$	XORing a number with itself gives 0

Gates: XOR properties

More XOR tricks (amaze your friends!): Classic swap problem (early CMSC 106)

> temp = x; x = y; y = temp;

Using XOR:

x = x ^ y ; y = x ^ y ; x = x ^ y ;

Let x_0 be the original value of x, y_0 be the original value of y:

```
\mathbf{x} = \mathbf{x} \wedge \mathbf{y} = \mathbf{x}0 \wedge \mathbf{y}0
y = x \wedge y = (x0 \wedge y0) \wedge y0 Substitute for x
   = x0 ^{(y0 ^{y0})}
                                           Associative property
   = x0 ^{0}
                                               x^{x} = 0
   = \mathbf{x}\mathbf{0}
                                               Identity
                                               Substitute for x and y
x = x^{y} = (x0^{y} + y0)^{y} = x0^{y}
                                              Associative, symmetric properties
   = (x0 ^ x0) ^ y0
   = 0 ^{y} 0
                                               x^{x} = 0
                                               Identity
   = y0
```

What other operator is a less-safe way of doing this?

Gates: XNOR

XNOR gate: implements XNOR (negated exclusive-OR) function Input: 2 bits Output: 1 bit

Truth table:

Symbol:

Input		Output	
\mathbf{x}_{0}	\mathbf{x}_1	Z	
0	0	1	
0	1	0	x // >>
1	0	0	
1	1	1	

 $z = x_0 XNOR x_1 = \sim (x_0 \land x_1)$

Properties:

symmetric: x XNOR y = y XNOR x
associative: (x XNOR y) XNOR z = x XNOR (y XNOR z)

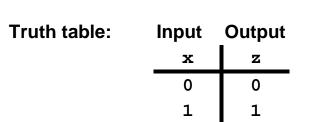
n inputs:

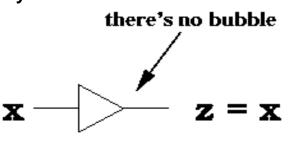
 $XNOR_n$ (x_0 , x_1 , . . . , x_n) = x_0 XNOR x_1 XNOR . . . x_n

Gates: Buffer

Buffer: implements equality function Input: 1 bit Output: 1 bit

Symbol:





This doesn't look very interesting at all!

There is a practical reason for it, however:

Circuits use electrical signals: 0 and 1 are represented by voltage.

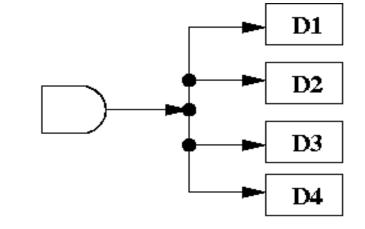
If current is too low, it's hard to measure voltage accurately.

"Fan out" (number of devices) reduces

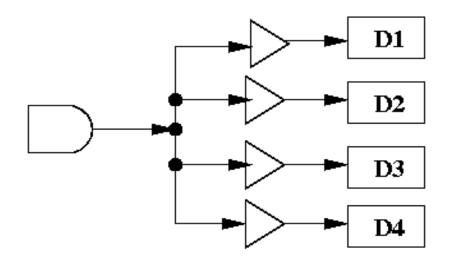
amount of current.

If the current from the AND gate is

distributed equally, then each device gets 1/4 the current.



A buffer can be used to "boost" the current back to the right level:



The buffer (like all other gates) is an active device; it requires power input to maintain current and voltage.

That's all EE stuff, and we're programmers. Why should we care about that?

Gates: Tri-State Buffer

A tri-state buffer acts like a valve: controls flow of current.

Input: 2 bits

Output: 1 bit

Truth table:

Input		Output		
С	x	Z		
0	0	Z	J	no current
0	1	Ζ	ſ	
1	0	0	-	
1	1	1		

simplified:	active-high	
	Input	Output
	С	z
	0	Z
	1	x

active-low

Output

z

 \mathbf{x}

Ζ

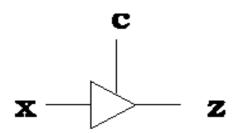
Input

C

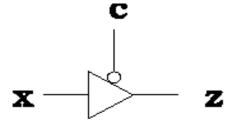
0

1

When c = 1, the output is equal to x, otherwise there is no output. Active-low: Output is x when c = 0.



tri-state buffer with active high control



tri-state buffer with active low control

Circuits

Gates may be connected to build circuits

Valid combinational circuits

The output of a gate may only be attached to the input of another gate. Think of this as a directed edge from output to input. There must be no cycles in the circuit (directed graph). Although the output of a gate may be attached to more than one input, an input may not have two different outputs attached to it (This would create conflicting input signals.) Each input of a gate must come from either the output of another gate or a source. Source: something which generates either a constant 0 or 1. Gate delay Output takes some small amount of time before it changes. Information can travel at most, at the speed of light.

Gate delay limits how fast the inputs can change and

the output can still have meaningful values.

This document was created with Win2PDF available at http://www.daneprairie.com. The unregistered version of Win2PDF is for evaluation or non-commercial use only.