

Gates

Gates: NOT Mr. Bill!
Basic building blocks for circuits
Implement boolean functions in hardware
Computer engineering: how to build it physically
Computer organization: how to design it logically
Combinational circuits
Output depends only on input
Sequential circuits
Output depends on input AND current state

Gates: truth tables

a		NOT		AND	OR	XOR	NOR		NAND	XNOR
	b	$\sim \mathrm{a}$	~b	$a \& b$	a \| b	$a \wedge b$	\sim (a	b)	$\sim(\mathrm{a} \& \mathrm{~b})$	$\sim(a \wedge b)$
0	0	1	1	0	0	0	1		1	1
0	1	1	0	0	1	1	0		1	0
1	0	0	1	0	1	1	0		1	0
1	1	0	0	1	1	0	0		0	1

How many possible boolean functions of 2 variables?
Depends on number of outputs
4 possible inputs --> 16 possible outputs of 1 bit each

Gates: truth tables

Gates: Inverter

Inverter: implements NOT function
Also known as "negation" or "complement"
Input: 1 bit
Output: 1 bit

Truth table:

Input	Output
\mathbf{x}	\mathbf{z}
0	1
1	0

Symbol:

Circle indicates negation

Other notation:

$$
\begin{aligned}
& z=x^{\prime} \\
& z=\bar{x} \\
& z=\backslash x
\end{aligned}
$$

Gates: AND

AND gate: implements AND function
Input: 2 bits
Output: 1 bit

Truth table:

Input		Output
\mathbf{x}_{0}	x_{1}	z
0	0	0
0	1	0
1	0	0
1	1	1

Other notation:

$$
\begin{aligned}
& \mathbf{z}=\text { AND }\left(\mathbf{x}_{0}, \mathbf{x}_{1}\right) \\
& \mathbf{z}=\mathbf{x}_{0} * \mathbf{x}_{1} \\
& \mathbf{z}=\mathbf{x}_{0} \mathbf{x}_{1}
\end{aligned}
$$

Symbol:

Properties:

symmetric: $\quad \mathrm{x} * \mathrm{y}=\mathrm{y}$ * x
associative: (x * y) * $z=x$ * (y * z)
n inputs:

Gates: OR

OR gate: implements OR function
Input: 2 bits
Output: 1 bit

Truth table:

Input \mathbf{x}_{0}	Output		
0	\mathbf{x}_{1}	\mathbf{z}	
0	1	0	
1	0	1	
1	1	1	
	$z=x_{0}$	\mathbf{x}_{1}	

Symbol:

Properties:

$$
\begin{aligned}
& z=O R\left(x_{0}, x_{1}\right) \\
& z=x_{0}+x_{1}
\end{aligned}
$$

n inputs:

$$
O R_{n}\left(x_{0}, x_{1}, \cdot \cdot \cdot, x_{n}\right)=x_{0}+x_{1}+\cdots \cdot x_{n}
$$

Gates: NAND

NAND gate: implements NAND (negated AND) function
Input: 2 bits
Output: 1 bit

Truth table:

Input		Output
\mathbf{x}_{0}	x_{1}	z
0	0	1
0	1	1
1	0	1
1	1	0

$\mathbf{z}=\mathbf{x}_{0}$ NAND \mathbf{x}_{1}
Properties:
symmetric: $\quad x$ NAND $y=y$ NAND x
not associative
n inputs:
$\operatorname{NAND}_{\mathrm{n}}\left(\mathbf{x}_{0}, \mathbf{x}_{1}, . . ., \mathbf{x}_{\mathrm{n}}\right)=\operatorname{NOT}\left(\mathbf{x}_{0} * \mathbf{x}_{1} * . . . \mathbf{x}_{\mathrm{n}}\right)$

Gates: NOR

NOR gate: implements NOR (negated OR) function
Input: 2 bits
Output: 1 bit

Truth table:

Input		Output
x_{0}	\mathbf{x}_{1}	z
0	0	1
0	1	0
1	0	0
1	1	0

Symbol:

Properties:
symmetric: $\quad \mathbf{x}$ NOR $y=y$ NOR x
not associative
n inputs:

$$
\operatorname{NOR}_{\mathrm{n}}\left(\mathbf{x}_{0}, \mathbf{x}_{1}, . . ., \mathbf{x}_{\mathrm{n}}\right)=\operatorname{NOT}\left(\mathbf{x}_{0}+\mathbf{x}_{1}+. . . \mathbf{x}_{\mathrm{n}}\right)
$$

Gates: XOR

XOR gate: implements exclusive-OR function
Input: 2 bits
Output: 1 bit

Truth table:

Input \mathbf{x}_{0}	Output	
0	0	\mathbf{x}
0	1	1
1	0	1
1	1	0
	$\mathbf{z}=\mathbf{x}_{0} \wedge \mathbf{x}_{1}$	

Symbol:

Z

Properties:
symmetric: $\quad \mathrm{x} \wedge \mathrm{y}=\mathrm{y} \wedge \mathrm{x}$
associative: ($\mathrm{x} \wedge \mathrm{y}$) ^ $\mathrm{z}=\mathrm{x} \wedge$ ($\mathrm{y} \wedge \mathrm{z}$)
n inputs:

Gates: XOR properties

Truth table:

Input \mathbf{x}_{0}	Output	
0	0	\mathbf{z}
0	1	1
1	0	1
1	1	0

Symbol:

XOR can be expressed in terms of AND, OR, NOT:
\mathbf{x} XOR y == (\mathbf{x} AND (NOT y)) OR ((NOT x) AND y) (If x is true, y must be false, and vice versa.)
$\mathbf{x}_{0} \wedge \mathbf{x}_{1} \wedge$. . . \mathbf{x}_{n} is true if the number of true values is odd, and false if the number of true values is even. Why?
$\mathbf{x}_{0} \wedge \mathbf{x}_{1} \wedge$. . . $\mathbf{x}_{\mathrm{n}}=\left(\mathbf{x}_{0}+\mathbf{x}_{1}+\right.$. . . $\left.\mathbf{x}_{\mathrm{n}}\right) \% 2$
XOR is the same as the sum modulo 2
$\mathbf{x} \wedge 0=x \quad$ XORing with 0 gives you back the same number (identity)
$x \wedge 1=\sim x \quad$ XORing with 1 gives you the complement
$\mathbf{x}^{\wedge} \mathbf{x}=0 \quad$ XORing a number with itself gives 0

Gates: XOR properties

More XOR tricks (amaze your friends!):
Classic swap problem (early CMSC 106)

$$
\begin{aligned}
& \text { temp }=\mathbf{x} \\
& \mathbf{x}=\mathbf{y} \\
& \mathbf{y}=\text { temp; }
\end{aligned}
$$

Using XOR:

$$
\begin{aligned}
& \mathrm{x}=\mathrm{x}_{\wedge}^{\wedge} \mathrm{y} ; \\
& \mathrm{y}=\mathrm{x}_{\wedge} \mathrm{y} ; \\
& \mathrm{x}=\mathrm{x}^{\wedge} \mathrm{y} ;
\end{aligned}
$$

Let $x 0$ be the original value of $x, y 0$ be the original value of y :

$$
x=x \wedge y=x 0 \wedge y 0
$$

$y=x \wedge y=(x 0 \wedge y 0) \wedge y 0 \quad$ Substitute for x
$=x 0 \wedge\left(y_{0} \wedge y_{0}\right)$
$=\times 0$ ^ 0
Associative property
$=x 0$
$\mathbf{x}=\mathbf{x} \wedge \mathbf{y}=(\mathrm{x} 0 \wedge \mathrm{y} 0) \wedge \mathrm{x} 0$
$=(x 0 \wedge x 0) \wedge y 0$
$=0 \wedge \mathrm{y}^{0}$
$x^{\wedge} \mathbf{x}=0$
Identity
Substitute for x and y
Associative, symmetric properties
$=\mathrm{y} 0$
$\mathbf{x}^{\wedge} \mathbf{x}=\mathbf{0}$
Identity
What other operator is a less-safe way of doing this?

Gates: XNOR

XNOR gate: implements XNOR (negated exclusive-OR) function
Input: 2 bits
Output: 1 bit
Truth table:
Symbol:

Input \mathbf{x}_{0}	Output	
0	0	\mathbf{z}
0	1	0
1	0	0
1	1	1

Properties:
symmetric: $\quad x$ XNOR $y=y$ XNOR x
associative: (x XNOR y) XNOR $z=x$ XNOR (y XNOR z)
n inputs:
XNOR $_{n}\left(\mathbf{x}_{0}, \mathbf{x}_{1}, \quad . \quad . \quad, \quad \mathbf{x}_{\mathrm{n}}\right)=\mathrm{x}_{0}$ XNOR x_{1} XNOR . . . \mathbf{x}_{n}

Gates: Buffer

Buffer: implements equality function

Input: 1 bit
Output: 1 bit

Truth table:

Input	Output
\mathbf{x}	\mathbf{z}
0	0
1	1

Symbol:

This doesn't look very interesting at all!
There is a practical reason for it, however:
Circuits use electrical signals: 0 and 1 are represented by voltage.
If current is too low, it's hard to measure voltage accurately.
"Fan out" (number of devices) reduces amount of current.
If the current from the AND gate is distributed equally, then each device gets $1 / 4$ the current.

A buffer can be used to "boost" the current back to the right level:

The buffer (like all other gates) is an active device; it requires power input to maintain current and voltage.
That's all EE stuff, and we're programmers. Why should we care about that?

Gates: Tri-State Buffer

A tri-state buffer acts like a valve: controls flow of current.
Input: 2 bits
Output: 1 bit Truth table:

Input \mathbf{c}	$\mathbf{y y y}$			
0	0	\mathbf{z}		
0	1	Z		no current
1	0	0		
1	1	1		

simplified: active-high Input Output

c	z
0	Z
1	x

active-low Input Output
When $c=1$, the output is equal to x, otherwise there is no output.
Active-low: Output is x when $\mathrm{c}=0$.

c	z
0	x
1	Z

tri-state buffer with active high control

tri-state buffer with active low control

Circuits

Gates may be connected to build circuits
Valid combinational circuits
The output of a gate may only be attached to the input of another gate.
Think of this as a directed edge from output to input.
There must be no cycles in the circuit (directed graph).
Although the output of a gate may be attached to more than one input,
an input may not have two different outputs attached to it
(This would create conflicting input signals.)
Each input of a gate must come from either the output of another gate or a source.
Source: something which generates either a constant 0 or 1.
Gate delay
Output takes some small amount of time before it changes.
Information can travel at most, at the speed of light.
Gate delay limits how fast the inputs can change and the output can still have meaningful values.

This document was created with Win2PDF available at http://www.daneprairie.com. The unregistered version of Win2PDF is for evaluation or non-commercial use only.

