Boolean functions

There are 16 possible functions with 2 bits of input and 1 bit of output. Of these, only 6 are gates:

AND, OR, XOR, NAND, NOR, XNOR
All possible Boolean functions can be written using at most 3 gates:
Set \{AND, OR, NOT\} is computationally complete.
Also \{NAND\}, \{NOR\}, and some others.
Example: use NAND to implement OR

$$
\begin{aligned}
x \mid y & =\sim \sim(x \mid y) \\
& =\sim(\sim x \& \sim y) \\
& =\sim x \text { NAND } \sim y
\end{aligned}
$$

Looks like we also need NOT
However, consider the following:
$\sim \mathbf{x}=\sim \mathrm{x} \mid \sim \mathrm{x}$
$a==a \mid a$
$=\sim(x \& x)$
DeMorgan's law
$=x$ NAND $x \quad$ Definition of NAND
So, $\quad x \mid y=(x$ NAND x) NAND (y NAND y)
A bit ugly, perhaps, but true.

Boolean functions: minterms

Consider a particular truth table with 3 inputs:

row	\mathbf{x}_{0}	\mathbf{x}_{1}	\mathbf{x}_{2}	\mathbf{z}
	0	0	0	0
1	0	0	1	0
2	0	1	0	0
3	0	1	1	0
4	1	0	0	0
5	1	0	1	1
6	1	1	0	0
7	1	1	1	0

Want to write a Boolean function for this truth table
Definition: literal is either a Boolean variable (x) or its negation ($\backslash x$); text uses overbar
We need to write some expressions involving literals for the 3 inputs
Minterm: a term containing exactly 1 instance of each variable, either itself
or its complement.
Example: in row 5, $x 0 \backslash x 1 \times 2$ has the value 1 .

Boolean functions: sum of products

What if more than one output in the truth table is $1 ?$
If m outputs are 1 , we need m minterms.
For each row with output 1, construct the minterm.
Combine the minterms by OR operators.
This is called the sum of products.
Products: each minterm is the result of combining literals with AND
Sum: represents combining minterms with OR
Example:

row	\mathbf{x}_{0}	\mathbf{x}_{1}	\mathbf{x}_{2}	\mathbf{z}	Minterms
0	0	0	0	0	
1	0	0	1	0	
2	0	1	0	1	$\backslash \times 0 \times 1 \backslash \times 2$
3	0	1	1	0	
4	1	0	0	0	
5	1	0	1	1	$\times 0 \backslash \times 1 \times 2$
6	1	1	0	0	
7	1	1	1	1	$\times 0 \times 1 \times 2$

Function: $\quad z=\backslash x 0 x 1 \backslash x 2+x 0 \backslash x 1 x 2+x 0 \times 1 \times 2$

Boolean functions: sum of products

Example: majority function

Boolean functions: sum of products

Majority function
$b c+a c+a b$

Boolean functions: sum of products

Canonical form: can represent any truth table using AND, OR, NOT
Sum of products (minterms)
If output is always $0: \mathbf{z}=0$
Product of sums
Look at rows containing 0
Create maxterms involving sums (OR) of input literals
Use AND to combine the maxterms

Minimization
Techniques are available to:
reduce the number of minterms
reduce the total number of literals
Karnaugh maps: graphical method

Boolean functions: functional completeness

Sum of products can represent any truth table:
$\mathbf{z}=p_{1}+p_{2} . . \quad .+p_{n}$
each $p_{i}=1_{1} 1_{2} . . .1_{m}$
and each l_{k} is a literal
Applying double negation to the right hand side,
$z=\sim \sim\left(p_{1}+p_{2} . .+p_{n}\right)$
$=\sim\left(\sim p_{1} * \sim p_{2} \cdot . \quad * \sim p_{n}\right) \quad$ by DeMorgan's law
OR has been eliminated.
Therefore, $\{\mathrm{NOT}, \mathrm{AND}\}$ is a functionally complete set.
Similarly, $\{N O T, O R\}$ is also functionally complete.

Are \{AND\} and \{OR\} functionally complete? No.
Consider any Boolean function composed of only these functions.
If all of the inputs are 1, then the output MUST be 1, and if all the inputs are 0 , then the output MUST be 0 .
1 AND $1==1$, 1 OR $1==1 \quad 0$ AND $0==0,0$ OR $0==0$
However, it is certainly possible to contruct a truth table where the output is 0 when all the inputs are 1, and vice versa.

Boolean functions: functional completeness

What about using only 1 Boolean function?
We showed earlier that OR could be implemented using only NAND:
$x \mid y=(x$ NAND x) NAND (y NAND y)
In the process of doing so, we also showed that NOT could be implemented with NAND:
$\sim \mathbf{x}=\mathbf{x}$ NAND \times
Since \{OR, NOT\} is functionally complete, so is \{NAND\}
Similarly, we can show that OR and NOT can be implemented with NOR:

```
~x = ~(x | x)
    = x NOR x
x | y = ~~(x | y)
    = ~(x NOR y)
    = (x NOR y) NOR (X NOR y)
```

This document was created with Win2PDF available at http://www.daneprairie.com. The unregistered version of Win2PDF is for evaluation or non-commercial use only.

