Adder

In order to construct a CPU, we need to perform arithmetic and logical operations.
Basic arithmetic operator: addition
What's involved in adding binary numbers?

carry	0	1	1	0		decimal
		0	0	1	1	3
		0	1	1	0	6
	result	1	0	0	1	9

In each column:
input: add 2 bits, along with a carry bit from the previous result output: 1 bit result, 1 bit carry
Half-adder
adds 2 bits (x, y), generates sum (s) and carry (c) (note that previous carry is being ignored)

Truth table

\mathbf{x}	\mathbf{y}	s	c
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

Boolean expressions:
$s=\backslash x y+x \backslash y=x$ XOR y
$\mathrm{c}=\mathrm{xy}$

Half adder: circuit
$s=\backslash x y+x \backslash y=x$ XOR y
$c=x y$
Circuit:

Black box:

Full adder

In order to perform true addition, we need to use the carry from the previous result Full adder

Data inputs: $\mathrm{x}, \mathrm{y}, \quad \mathrm{c}_{\text {in }}$ (carry in)
Data outputs: s, $c_{\text {out }}$ (carry out)
Truth table

\mathbf{x}	\mathbf{y}	$\boldsymbol{c}_{\text {in }}$	\mathbf{s}	$\boldsymbol{c}_{\text {out }}$
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

Boolean expressions

$$
\left.\begin{array}{rl}
s=\backslash x \backslash y c_{i n}+\backslash x y \backslash c_{i n} \\
& +x \backslash y \backslash c_{i n}+x y c_{i n}
\end{array}\right] \begin{aligned}
c_{\text {out }}= & \\
& x y c_{i n}+x \backslash y c_{i n} \\
& +x y \backslash c_{i n}+x y c_{i n}
\end{aligned}
$$

Ripple carry adder
adding k-bit values
ripple-carry adder: combine k 1-bit full adders
3-bit ripple-carry adder

Notice that $\mathbf{0}$ is hard-wired as carry-in for rightmost full adder (could have used half adder)

Adder delay

Ripple-carry adder is logically correct, but may be slow.
Each circuit requires a finite amount of time to give stable outputs when inputs change.
Circuits are working in parallel, but it takes a finite amount of time before the carry-in from one circuit is available for the next one to use.
Assume time T for each FA to generate output.
n-bit ripple carry adder has $O(n)$ delay: $n T$
Speed can be improved by using "carry-lookahead": compute carries in parallel

This document was created with Win2PDF available at http://www.daneprairie.com. The unregistered version of Win2PDF is for evaluation or non-commercial use only.

