Decoder

Function: sets exactly one of n outputs to 1, based on unsigned binary value Input: ceil (lg n)
Output: n bits (exactly one is 1 , rest are 0)

Example: 3-8 decoder
Inputs: 3 bits representing UB number
Output: 1 bit corresponding to the value of the UB number is set to 1

Black box:

Truth table:

\mathbf{x}_{2}	\mathbf{x}_{1}	\mathbf{x}_{0}	\mathbf{z}_{7}	\mathbf{z}_{6}	\mathbf{z}_{5}	\mathbf{z}_{4}	\mathbf{z}_{3}	\mathbf{z}_{2}	\mathbf{z}_{1}	\mathbf{z}_{0}
0	0	0	0	0	0	0	0	0	0	1
0	0	1	0	0	0	0	0	0	1	0
0	1	0	0	0	0	0	0	1	0	0
0	1	1	0	0	0	0	1	0	0	0
1	0	0	0	0	0	1	0	0	0	0
1	0	1	0	0	1	0	0	0	0	0
1	1	0	0	1	0	0	0	0	0	0
1	1	1	1	0	0	0	0	0	0	0

Boolean expressions for each output:

$$
\begin{array}{ll}
\mathbf{z}_{0}=\backslash \mathbf{x}_{2} \backslash \mathbf{x}_{1} \backslash \mathbf{x}_{0} & \mathbf{z}_{4}=\mathbf{x}_{2} \backslash \mathbf{x}_{1} \backslash \mathbf{x}_{0} \\
\mathbf{z}_{1}=\backslash \mathbf{x}_{2} \backslash \mathbf{x}_{1} \mathbf{x}_{0} & \mathbf{z}_{5}=\mathbf{x}_{2} \backslash \mathbf{x}_{1} \mathbf{x}_{0} \\
\mathbf{z}_{2}=\backslash \mathbf{x}_{2} \mathbf{x}_{1} \backslash \mathbf{x}_{0} & \mathbf{z}_{6}=\mathbf{x}_{2} \mathbf{x}_{1} \backslash \mathbf{x}_{0} \\
\mathbf{z}_{3}=\backslash \mathbf{x}_{2} \mathbf{x}_{1} \mathbf{x}_{0} & \mathbf{z}_{7}=\mathbf{x}_{2} \mathbf{x}_{1} \mathbf{x}_{0}
\end{array}
$$

Decoder

Decoder vs. DEMUX
3-8 decoder: 3 data inputs, 8 outputs
1-8 DEMUX: 1 data input, 3 control inputs, 8 outputs
Add enable control bit to decoder:
$e=0$: all outputs are 0
$e=1$: behaves like regular decoder
Data inputs of a decoder correspond to the control bits of a DEMUX Enable input of a decoder corresponds to the data bit of a DEMUX
The two circuits are identical.

Encoder

Encoder is reverse of decoder 8-3 encoder

8 inputs, exactly one has value 1
3 output bits, representing which input was equal to 1 (binary representation of input)
Example: input: $x_{5}=1 \quad$ output: $z_{2} z_{1} z_{0}=101$

Simplified truth table:

Input $==1$	\mathbf{z}_{2}	\mathbf{z}_{1}	\mathbf{z}_{0}
\mathbf{x}_{0}	0	0	0
\mathbf{x}_{1}	0	0	1
\mathbf{x}_{2}	0	1	0
\mathbf{x}_{3}	0	1	1
\mathbf{x}_{4}	1	0	0
\mathbf{x}_{5}	1	0	1
\mathbf{x}_{6}	1	1	0
\mathbf{x}_{7}	1	1	1

Minterms are rather large (from full truth table):

However, we can take advantage of the fact that exactly one input is 1 :

$$
\begin{aligned}
& z_{2}=x_{4}+x_{5}+x_{6}+\mathbf{x}_{7} \\
& z_{1}=\mathbf{x}_{2}+\mathbf{x}_{3}+\mathbf{x}_{6}+\mathbf{x}_{7} \\
& \mathbf{z}_{0}=\mathbf{x}_{1}+\mathbf{x}_{3}+\mathbf{x}_{5}+\mathbf{x}_{7}
\end{aligned}
$$

Example: $\quad x_{5}=1$
$z_{2} z_{1} z_{0}=101$
(UB for 5)

Priority Encoder

We can't always assume that only one input will be 1.
Priority encoder: assumes that at least one input will be 1.
Which input to encode? Use priority scheme
Larger subscripts could have higher priority
Smaller subscripts could have higher priority
Assume larger subscripts have priority
Boolean expressions no longer necessarily valid
Suppose x_{4} and x_{3} are both equal to 1
Then $z_{2} z_{1} z_{0}=111$, but the result should be 100, since 4 has higher priority What does it mean that 4 has the highest priority?

All of the higher inputs must be 0 , and the lower inputs don't matter:

$$
\backslash \mathbf{x}_{7} \backslash \mathbf{x}_{6} \backslash \mathbf{x}_{5} \mathbf{x}_{4}
$$

Negate all literals with higher priority, and leave out lower ones
Replace each term in original expressions

$$
\begin{aligned}
& \mathbf{z}_{2}=\mathbf{x}_{7}+\backslash \mathbf{x}_{7} \mathbf{x}_{6}+\backslash \mathbf{x}_{7} \backslash \mathbf{x}_{6} \mathbf{x}_{5}+\backslash \mathbf{x}_{7} \backslash \mathbf{x}_{6} \backslash \mathbf{x}_{5} \mathbf{x}_{4} \\
& \mathbf{z}_{1}=\mathbf{x}_{7}+\backslash \mathbf{x}_{7} \mathbf{x}_{6}+\backslash \mathbf{x}_{7} \backslash \mathbf{x}_{6} \backslash \mathbf{x}_{5} \backslash \mathbf{x}_{4} \mathbf{x}_{3}+\backslash \mathbf{x}_{7} \backslash \mathbf{x}_{6} \backslash \mathbf{x}_{5} \backslash \mathbf{x}_{4} \backslash \mathbf{x}_{3} \mathbf{x}_{2} \\
& \mathbf{z}_{0}=\mathbf{x}_{7}+\backslash \mathbf{x}_{7} \backslash \mathbf{x}_{6} \mathbf{x}_{5}+\backslash \mathbf{x}_{7} \backslash \mathbf{x}_{6} \backslash \mathbf{x}_{5} \backslash \mathbf{x}_{4} \mathbf{x}_{3}+\backslash \mathbf{x}_{7} \backslash \mathbf{x}_{6} \backslash \mathbf{x}_{5} \backslash \mathbf{x}_{4} \backslash \mathbf{x}_{3} \backslash \mathbf{x}_{2} \mathbf{x}_{1}
\end{aligned}
$$

This can be further simplified.
If x_{7} is the highest priority 1 , then it doesn't matter if the other terms are 0 or not.

$$
z_{2}=x_{7}+x_{6}+\backslash x_{6} x_{5}+\backslash x_{6} \backslash x_{5} x_{4}
$$

Similarly, if $\mathbf{x 6}$ is the highest priority $\mathbf{1}$, then $\backslash \mathrm{x}_{6}$ is not necessary in the other 2 terms.

$$
\mathbf{z}_{2}=\mathbf{x}_{7}+\mathbf{x}_{6}+\mathbf{x}_{5}+\backslash \mathbf{x}_{5} \mathbf{x}_{4}
$$

We can also eliminate $\backslash x_{5}$ in the last term.

$$
\mathbf{z}_{2}=\mathbf{x}_{7}+\mathbf{x}_{6}+\mathbf{x}_{5}+\mathbf{x}_{4}
$$

(Notice that this expression gives back the original form.)
In the expression for z_{1}, however, we need to keep $\backslash x_{5}$ and $\backslash x_{4}$:

$$
z_{1}=x_{7}+x_{6}+\backslash x_{5} \backslash x_{4} x_{3}+\backslash x_{5} \backslash x_{4} x_{2}
$$

Likewise, for z_{0}, we need to keep $\backslash x_{6}, \backslash x_{4}$, and $\backslash x_{2}$:

$$
z_{0}=x_{7}+\backslash \mathbf{x}_{6} \mathbf{x}_{5}+\backslash \mathbf{x}_{6} \backslash \mathbf{x}_{4} x_{3}+\backslash \mathbf{x}_{6} \backslash \mathbf{x}_{4} \backslash \mathbf{x}_{2} \mathbf{x}_{1}
$$

In general, we need to keep the negation of any literal which doesn't appear as a higher-priority value.

What if all inputs are $\mathbf{0}$?
We can encode the output as 000 , and x_{0} will have the highest priority by default.

This document was created with Win2PDF available at http://www.daneprairie.com. The unregistered version of Win2PDF is for evaluation or non-commercial use only.

