Carry lookahead

Can calculate carries in parallel
Tradeoff: need more hardware (space vs. time)
Boolean expression for carry-out:
Cout = \Xycin + X\ycin + Xy\ Cin * XYCjp
What does this expression look like?
z = \abc + a\bc + ab\c + abc
How many inputs? 3
How many need to be true? 2
What is that function called?
Alternate expression for carry-out:
Cout = XY + XCin + YCin
This means that there is a carry whenever at least 2 of the bits are 1 (possibly all 3).
Call ¢;, ¢; (carry-in for biti) and ¢y, C;.q (carry-in for bit i+1)
Distributive property:
Civi = Xi¥i + (X + Vi)
Define 2 new terms:
gi = XYi
Pi = X T
Then rewrite expression for c; ;4
Civ1 = 0i * PiCy



g; is called the generate term
it always generates a carry out, if equal to 1
p; is called the propagate term.
it may generate a carry, depending on the carry-in (c;)
if exactly one of x; or y; is 1, then the carry-in will determine the carry-out
How can we get rid of the dependency on the carry-in?
Let's look at the first carry:
Ci = Qo * PoCo
The next one is:
C, = 01 + P&y
Now we can plug in the expression for c¢,, which we just calculated:
Cz = g1 *+ P1(9o + PoCo)
= 01 * P90 t P1PoCo
How do we get the right side of this expression?
Since g; and p; depend only on x;and y;
and g, and py depend only on x, and y,
and c, depends only on xg and y, (there is no carry-in for the addition of bits 0),
we can get ¢, right away without waiting for ¢!
Likewise,
C3 = 02 * P2C;
= 02 * P2(9:1 + Pigo + P1PoCo)

= 02 t P2091 + P2P190 t+ P2P1PoCo
Following the same pattern,



Cs = 0z + P39 *+ P3P291 + P3P2P19o + P3P2P1PoCo
The circuit uses full adders, but the output of one

Is not directly connected to the input of the next



Carry lookahead

Approximate circuit for 3 bits:

cnut

2

What's missing?
Need to show connections from x; and y; to the appropriate adders.



Carry lookahead: circuit

b3 (4] f'l?: ) .I'IJ'| ay .l'r}l| e
|
t_ t_ t_ _j e Maximum gate delay
_ J k _ J ) _ J L for the carry genera-
(J-_'{ JDI'; l{_l'I: Jr":(_fl Enl (_l'll:,

tion is only 3. The
full adders introduce
two more gate de-
lays. Worst case
path is 5 gate de-

lays.
Cyq | 0 0
vy 2 YYVY  wwvV
Full Full Full Full
adder adder adder adder
o

.\l”

Principles of Computer Architecture by M. Murdocca and V. Heuring € 1999 M. Murdocca and Y. Heuring



Carry lookahead: group

How much have we reduced the delay?
We would like to have O(1) time, but
note that there are i OR operations for the ith carry ci,
and there are also i AND operations for the biggest term
There is a practical limit to the number of inputs to a single gate (fan-in).
We could build everything out of 2-input AND gates and OR gates, and the
delay would be only O(lg n) for n bits, which is still much better than O(n).
Another approach:
Build 4-bit carry-lookahead units, then cascade them together in group of
4 to get 16-bit adder.
This can be done with a maximum fan-in of only 4.
This is called group carry-lookahead (GCLA)
Need to deal with propagates and generates between 4-bit blocks.
"Super"” propagate:
A propagate will occur from one group of 4 to the next
If every propagate in the first group is true.
Po=pPs * p2* P1* Po
Similarly:
Pr=p7 * Ps ™ Ps * Pa
P> = P11 * Pwo * Po * Ps



P;3 = Pis * P * Pz ™ P
"Super"” generate:
A generate will occur between 4-bit groups
if there is a carry out from the most signficant bit in the 4-bit group.
This occurs when:
Generate occurs for the most significant bit OR
Generate occurs for a lower bit and all intermediate propagates are true
Js *+ (P3s * 92) + (P3s * P2 * 91) + (Ps * P2 * P1 * do)
g7 + (P7 * Ge) + (P7 * Pe * 9s) * (P7 * Ps * Ps * Q4)
Jiz * (P12 * 910) + (P11 * P10 * 9g) + (P11 * P10 * Pg * Qs)
Ji5 * (P15 * 914) + (P15 * P1a * 913) + (P15 P14* P13* Y12)

H H O H

Carry out:

Carry out for the 4-bit group is similar to the carry out for each bit:

C, =
C, =
C;, =
G =

H H O H

=+

+
+
+

PoCo

P.& + P1Pycq

PG + P,PiG& + P>P1Pycq

P:G + P3P,G + P3P,P.G + P3P,P1Pgcy



Carry lookahead: group

Carryln
16-bit adder using carry-lookahead with
?g—l- Ca;:}'ln 4-bit adders (Flg 424)
AL = * Resultd-3 . .
al —» o Note that carry-in for each 4-bit adder
: ALUD ¥ i ]
be—s] IO < is generated by carry-lookahead unit,
A5 — . ..
b3 — Carry-lookahead unit not individual adders
H ci+ 1
ad —w Carryln
b4 ——m » Resultd-7
ap —
FS —_ ALU1P_I Joi s
E;.J,_"' Gl | 0i+ 1
b7 — -
[ — ci+ 2
a8 — Carryln
8 ——] * Result8-11
A9 =i
e 2 ALLIZ .
a10 —m P2 o i+ 2
D10 —— G2 i+ 2
=
rca ci+ 3
al2 —| Carryln
b1z —m # Result] 2-15
a3 —m
b1 —a| AL
ald4 —m P3 o pi+ 3
B4 — G3 o i+ 3
a5 — C4
B15 —

i+ 4
ht+

CarryOut



Carry-select

Another solution: carry-select adder
Design trick: When all else fails, GUESS! (precompute)
To build 8-bit adder:
Lower 4 bits: any adder (ripple-carry, carry-lookahead)
Upper 4 bits: 2 adders
First adder has carry-in of 1
Second adder has carry-in of O
Select between 2 upper results based on carry-out from lower result

1 (obtadder Jo—o [7bitadder

Cu:uut-l—l l Carry-select adder

=162/ Kublalowicr
Lecd a5 Reference:

20003 EUCE Spring 2003

________________________________

Time required:
4-bit add time
Multiplexor to select


http://www-inst.eecs.berkeley.edu/~cs152/

Adder complexity

Ripple-carry (RCA)
Carry-lookahead (CLA)
Carry-select (CSA)

Time
O(n)
O(log n)
O(sqgrt n)

Space
O(n)

O(n log n)
O(n)



This document was created with Win2PDF available at http://www.daneprairie.com.
The unregistered version of Win2PDF is for evaluation or non-commercial use only.



http://www.daneprairie.com

