
Carry lookahead

Can calculate carries in parallel
Tradeoff: need more hardware (space vs. time)
Boolean expression for carry-out:

cout = \xycin + x\ycin + xy\cin + xycin
What does this expression look like?

z = \abc + a\bc + ab\c + abc

How many inputs? 3
How many need to be true? 2
What is that function called?
Alternate expression for carry-out:

cout = xy + xcin + ycin
This means that there is a carry whenever at least 2 of the bits are 1 (possibly all 3).
Call cin ci (carry-in for bit i) and cout ci+1 (carry-in for bit i+1)
Distributive property:

 ci+1 = xiyi + ci(xi + yi)

Define 2 new terms:
 gi = xiyi
 pi = xi + yi

Then rewrite expression for ci+1
 ci+1 = gi + pici

gi is called the generate term
it always generates a carry out, if equal to 1

pi is called the propagate term.
it may generate a carry, depending on the carry-in (ci)
if exactly one of xi or yi is 1, then the carry-in will determine the carry-out

How can we get rid of the dependency on the carry-in?
Let's look at the first carry:

 c1 = g0 + p0c0
The next one is:

 c2 = g1 + p1c1
Now we can plug in the expression for c1, which we just calculated:

 c2 = g1 + p1(g0 + p0c0)

 = g1 + p1g0 + p1p0c0
How do we get the right side of this expression?
Since g1 and p1 depend only on x1 and y1,

and g0 and p0 depend only on x0 and y0,

and c0 depends only on x0 and y0 (there is no carry-in for the addition of bits 0),
we can get c2 right away without waiting for c1!

Likewise,
 c3 = g2 + p2c2
 = g2 + p2(g1 + p1g0 + p1p0c0)

 = g2 + p2g1 + p2p1g0 + p2p1p0c0
Following the same pattern,

 c4 = g3 + p3g2 + p3p2g1 + p3p2p1g0 + p3p2p1p0c0
The circuit uses full adders, but the output of one

is not directly connected to the input of the next

Carry lookahead

Approximate circuit for 3 bits:

What's missing?
Need to show connections from xi and yi to the appropriate adders.

Carry lookahead: circuit

Carry lookahead: group

How much have we reduced the delay?
We would like to have O(1) time, but

note that there are i OR operations for the ith carry ci,
and there are also i AND operations for the biggest term

There is a practical limit to the number of inputs to a single gate (fan-in).
We could build everything out of 2-input AND gates and OR gates, and the

delay would be only O(lg n) for n bits, which is still much better than O(n).
Another approach:

Build 4-bit carry-lookahead units, then cascade them together in group of
4 to get 16-bit adder.

This can be done with a maximum fan-in of only 4.
This is called group carry-lookahead (GCLA)

Need to deal with propagates and generates between 4-bit blocks.
"Super" propagate:

A propagate will occur from one group of 4 to the next
if every propagate in the first group is true.

P0 = p3 * p2 * p1 * p0
Similarly:
P1 = p7 * p6 * p5 * p4
P2 = p11 * p10 * p9 * p8

P3 = p15 * p14 * p13 * p12
"Super" generate:

A generate will occur between 4-bit groups
if there is a carry out from the most signficant bit in the 4-bit group.

This occurs when:
Generate occurs for the most significant bit OR
Generate occurs for a lower bit and all intermediate propagates are true

G0 = g3 + (p3 * g2) + (p3 * p2 * g1) + (p3 * p2 * p1 * g0)

G1 = g7 + (p7 * g6) + (p7 * p6 * g5) + (p7 * p6 * p5 * g4)

G2 = g11 + (p11 * g10) + (p11 * p10 * g9) + (p11 * p10 * p9 * g8)

G3 = g15 + (p15 * g14) + (p15 * p14 * g13) + (p15*p14*p13*g12)

Carry out:
Carry out for the 4-bit group is similar to the carry out for each bit:
C1 = G0 + P0c0
C2 = G1 + P1G0 + P1P0c0
C3 = G2 + P2G1 + P2P1G0 + P2P1P0c0
C4 = G3 + P3G2 + P3P2G1 + P3P2P1G0 + P3P2P1P0c0

Carry lookahead: group

16-bit adder using carry-lookahead with
4-bit adders (Fig. 4.24)

Note that carry-in for each 4-bit adder
is generated by carry-lookahead unit,
 not individual adders

Carry-select

Another solution: carry-select adder
Design trick: When all else fails, GUESS! (precompute)

To build 8-bit adder:
Lower 4 bits: any adder (ripple-carry, carry-lookahead)
Upper 4 bits: 2 adders

First adder has carry-in of 1
Second adder has carry-in of 0

Select between 2 upper results based on carry-out from lower result

Reference:

http://www-inst.eecs.berkeley.edu/~cs152/

Time required:
4-bit add time
Multiplexor to select

http://www-inst.eecs.berkeley.edu/~cs152/

Adder complexity
Time Space

Ripple-carry (RCA) O(n) O(n)
Carry-lookahead (CLA) O(log n) O(n log n)
Carry-select (CSA) O(sqrt n) O(n)

This document was created with Win2PDF available at http://www.daneprairie.com.
The unregistered version of Win2PDF is for evaluation or non-commercial use only.

http://www.daneprairie.com

