Carry lookahead

Can calculate carries in parallel
Tradeoff: need more hardware (space vs. time)
Boolean expression for carry-out:

$$
c_{\text {out }}=\backslash x y c_{i n}+x \backslash y c_{i n}+x y \backslash c_{i n}+x y c_{i n}
$$

What does this expression look like?

```
z = \abc + a\bc + ab\c + abc
```

How many inputs? 3
How many need to be true? 2
What is that function called?
Alternate expression for carry-out:

$$
c_{\text {out }}=x y+x c_{i n}+y c_{i n}
$$

This means that there is a carry whenever at least 2 of the bits are 1 (possibly all 3).
Call $c_{\text {in }} c_{i}$ (carry-in for bit i) and $c_{\text {out }} c_{i+1}$ (carry-in for bit $i+1$)
Distributive property:

$$
c_{i+1}=x_{i} y_{i}+c_{i}\left(x_{i}+y_{i}\right)
$$

Define 2 new terms:

$$
\begin{aligned}
& g_{i}=x_{i} y_{i} \\
& p_{i}=x_{i}+y_{i}
\end{aligned}
$$

Then rewrite expression for $\mathbf{c}_{\mathbf{i}+1}$

$$
c_{i+1}=g_{i}+p_{i} c_{i}
$$

g_{i} is called the generate term
it always generates a carry out, if equal to 1
p_{i} is called the propagate term.
it may generate a carry, depending on the carry-in (c_{i})
if exactly one of x_{i} or y_{i} is 1 , then the carry-in will determine the carry-out
How can we get rid of the dependency on the carry-in?
Let's look at the first carry:

$$
c_{1}=g_{0}+p_{0} c_{0}
$$

The next one is:

$$
c_{2}=g_{1}+p_{1} c_{1}
$$

Now we can plug in the expression for c_{1}, which we just calculated:

$$
\begin{aligned}
c_{2} & =g_{1}+p_{1}\left(g_{0}+p_{0} c_{0}\right) \\
& =g_{1}+p_{1} g_{0}+p_{1} p_{0} c_{0}
\end{aligned}
$$

How do we get the right side of this expression?
Since g_{1} and p_{1} depend only on x_{1} and y_{1},
and g_{0} and p_{0} depend only on x_{0} and y_{0},
and c_{0} depends only on x_{0} and y_{0} (there is no carry-in for the addition of bits 0),
we can get c_{2} right away without waiting for c_{1} !
Likewise,

$$
\begin{aligned}
\mathbf{C}_{3} & =g_{2}+p_{2} c_{2} \\
& =g_{2}+p_{2}\left(g_{1}+p_{1} g_{0}+p_{1} p_{0} c_{0}\right) \\
& =g_{2}+p_{2} g_{1}+p_{2} p_{1} g_{0}+p_{2} p_{1} p_{0} c_{0}
\end{aligned}
$$

Following the same pattern,

$$
c_{4}=g_{3}+p_{3} g_{2}+p_{3} p_{2} g_{1}+p_{3} p_{2} p_{1} g_{0}+p_{3} p_{2} p_{1} p_{0} c_{0}
$$

The circuit uses full adders, but the output of one
is not directly connected to the input of the next

Carry lookahead

Approximate circuit for 3 bits:

What's missing?
Need to show connections from x_{i} and y_{i} to the appropriate adders.

Carry lookahead: circuit

Carry lookahead: group

How much have we reduced the delay?
We would like to have $O(1)$ time, but
note that there are i OR operations for the ith carry ci,
and there are also i AND operations for the biggest term
There is a practical limit to the number of inputs to a single gate (fan-in).
We could build everything out of 2-input AND gates and OR gates, and the
delay would be only $\mathrm{O}(\lg \mathrm{n})$ for n bits, which is still much better than $\mathrm{O}(\mathrm{n})$.
Another approach:
Build 4-bit carry-lookahead units, then cascade them together in group of 4 to get 16-bit adder.
This can be done with a maximum fan-in of only 4.
This is called group carry-lookahead (GCLA)
Need to deal with propagates and generates between 4-bit blocks.
"Super" propagate:
A propagate will occur from one group of 4 to the next
if every propagate in the first group is true.
$\mathrm{P}_{0}=\mathrm{p}_{3} * \mathrm{p}_{2} * \mathrm{p}_{1} * \mathrm{p}_{0}$
Similarly:
$\mathrm{P}_{1}=\mathrm{p}_{7}$ * p_{6} * p_{5} * p_{4}
$P_{2}=p_{11}{ }^{*} p_{10}{ }^{*} p_{9} * p_{8}$

```
P
```

"Super" generate:
A generate will occur between 4-bit groups
if there is a carry out from the most signficant bit in the 4-bit group.
This occurs when:
Generate occurs for the most significant bit OR
Generate occurs for a lower bit and all intermediate propagates are true


```
G
```



```
G}=\mp@subsup{g}{15}{}+(\mp@subsup{p}{15}{*}*\mp@subsup{g}{14}{})+(\mp@subsup{p}{15}{** p}\mp@subsup{p}{14}{}*\mp@subsup{g}{13}{})+(\mp@subsup{p}{15}{*}*\mp@subsup{p}{14}{** }\mp@subsup{p}{13}{*}*\mp@subsup{g}{12}{}
```

Carry out:
Carry out for the 4-bit group is similar to the carry out for each bit:

$$
\begin{aligned}
& \mathrm{C}_{1}=\mathrm{G}_{0}+\mathrm{P}_{0} \mathrm{C}_{0} \\
& \mathrm{C}_{2}=\mathrm{G}_{1}+\mathrm{P}_{1} \mathrm{G}_{0}+\mathrm{P}_{1} \mathrm{P}_{0} \mathrm{C}_{0} \\
& \mathrm{C}_{3}=\mathrm{G}_{2}+\mathrm{P}_{2} \mathrm{G}_{1}+\mathrm{P}_{2} \mathrm{P}_{1} \mathrm{G}_{0}+\mathrm{P}_{2} \mathrm{P}_{1} P_{0} \mathrm{C}_{0} \\
& \mathrm{C}_{4}=\mathrm{G}_{3}+\mathrm{P}_{3} \mathrm{G}_{2}+\mathrm{P}_{3} \mathrm{P}_{2} G_{1}+\mathrm{P}_{3} \mathrm{P}_{2} \mathrm{P}_{1} G_{0}+\mathrm{P}_{3} \mathrm{P}_{2} P_{1} P_{0} \mathrm{C}_{0}
\end{aligned}
$$

Carry lookahead: group

16-bit adder using carry-lookahead with 4-bit adders (Fig. 4.24)
Note that carry-in for each 4-bit adder is generated by carry-lookahead unit, not individual adders

Carry-select

Another solution: carry-select adder
Design trick: When all else fails, GUESS! (precompute)
To build 8-bit adder:
Lower 4 bits: any adder (ripple-carry, carry-lookahead)
Upper 4 bits: 2 adders
First adder has carry-in of 1
Second adder has carry-in of 0
Select between 2 upper results based on carry-out from lower result

2/1000
cucB Sping 2003

CS152 / Kublatowicz Lect 35

Reference:

Time required:
4-bit add time
Multiplexor to select

Adder complexity		
	Time	Space
Ripple-carry (RCA)	O(n)	$O(n)$
Carry-lookahead (CLA)	$O(\log n)$	$O(n \log n)$
Carry-select (CSA)	$O(s q r t n)$	$O(n)$

This document was created with Win2PDF available at http://www.daneprairie.com. The unregistered version of Win2PDF is for evaluation or non-commercial use only.

