
CPU

CPU = datapath + control
ALU: arithmetic/logic unit

performs operations to execute arithmetic and logical instructions



ALU: 1-bit

We now have the ingredients for a simple 1-bit arithmetic-logic unit (ALU)
Operations: ADD a + b + cin

AND a AND b

OR a OR b

Inputs: data: a, b, cin
control: con1, con2

Outputs: result, cout

Components: AND gate
OR gate
Full adder
4-1 MUX

1-bit ALU (Fig. 4.14)
(Operation is 2-bit control con1, con2)

Can construct k-bit ALU by combining k 1-bit ALUs
What other operations could we have?



ALU: 1-bit

How about subtraction?
We can use the adder to add the negated form of the operand

a - b = a + (-b)

Add an inverter to the circuit to negate b
This gives 1's complement
How do we get 2C value?

Use cin = 1 for least significant bit
a + ~b + 1 = a + (~b + 1) = a + (-b) = a - b

Another MUX with control input Binvert 
can select b or -b

1-bit ALU with subtraction 
(Fig. 4.16)



ALU: 1-bit

This ALU can perform most of the data operations in the MIPS instruction set
Another operation, useful for branching: set on less than (slt)
Set the lsb to 1 if rs < rt, and 0 otherwise
If (a-b) is negative, then a < b: (a - b) < 0

(a - b) + b < 0 + b

a < b

Result is same as sign bit from subtraction: Connect sign bit from adder to lsb of output
Unfortunately, we can only do 1 ALU operation at a time (add or slt)
Need a new 1-bit ALU for the msb 

with an extra output from adder
Extra output: Set

Additional MUX data input: Less
0 for all except lsb
Set value for lsb

Also add overflow detection

1-bit ALU with set on less than
(Fig. 4.17b)



ALU: k-bit

To operate on k-bit values, 
we can connect k 1-bit ALU's

32-bit ALU is constructed using 32
1-bit ALU's

Input bits are connected in pairs
Control bits (Binvert, Operation) 

are connected to each ALU
cout from each ALU is connected to

cin of next most significant bit ALU
(ripple carry)

cin for lsb is 1 for subtract operation
Set from ALU31 (msb) is connected 

to Less input of ALU0 (lsb)
(0 input for all other ALUs)

Overflow from ALU31 is additional output

32-bit ALU (Fig. 4.18)



ALU: k-bit

What about conditional branch?
Branch if 2 values are either equal or not equal
Easiest way to test if a == b: subtract, test result:

OR all result bits together and complement
One more refinement: combine Binvert and CarryIn control values into Bnegate:

subtract: both are 1
add or logical ops: both are 0

Bnegate (1 bit) and Operation (2 bits) are 3-bit control for MUX:
control function
000 AND

001 OR

010 ADD

110 SUB

111 SLT



ALU: k-bit

Additions:
Bnegate control input

to subtract
Zero output:

inverted OR of
all outputs

Input: a, b
Control:

Bnegate
Operation

Output: 
Result
Zero
Overflow

32-bit ALU with zero
detection
(Fig. 4.19)



ALU: k-bit

Universal symbol to represent ALU 
Can also be used for adder alone, so labeled accordingly

(Fig. 4.21)



This document was created with Win2PDF available at http://www.daneprairie.com.
The unregistered version of Win2PDF is for evaluation or non-commercial use only.

http://www.daneprairie.com

