CPU

M Data

Register #
PO i Addross Instructicn Registers
Reqgister #

Instruction
MEMOTY

Fogister

Address

Data
memory

™ Data

CPU = datapath + control
ALU: arithmetic/logic unit

performs operations to execute arithmetic and logical instructions

ALU: 1-bit

We now have the ingredients for a simple 1-bit arithmetic-logic unit (ALU)

Operations: ADD a+b+c,
Ciperation
g::D a g':Dbb Carryln |
a
Inputs: data: a, b, ¢, S A 3 f&\
control: con,, con, L/
L o
OUtpUtSZ resul t, Cout 1 & Result
—
Components: AND gate 1 + 2
OR gate . ~
Full adder +
4-1 MUX CarryOut

1-bit ALU (Fig. 4.14)

(Operation is 2-bit control con;, con,)
Can construct k-bit ALU by combining k 1-bit ALUs
What other operations could we have?

ALU: 1-bit

How about subtraction?
We can use the adder to add the negated form of the operand
a-b=a+ (-b)
Add an inverter to the circuit to negate b
This gives 1's complement
How do we get 2C value?
Use c;, = 1 for least significant bit
a+~b+1=a+(~-b+1) =a+ (-b) =a-0>b
Another MUX with control input Binvert
can select bor-b Hiner

Carryln

™y
S
=) >
L

+

1-bit ALU with subtraction ~—
(Fig. 4.16)

¥
CarryOut

» Result

ALU: 1-bit

This ALU can perform most of the data operations in the MIPS instruction set
Another operation, useful for branching: set on less than (sl t)
Set the Isb to 1 if rs <rt, and O otherwise

If (a-b) is negative, then a < b: (a-Db) <O
(a-b) +b<0+Db
a<hb

Result is same as sign bit from subtraction: Connect sign bit from adder to Isb of output
Unfortunately, we can only do 1 ALU operation at a time (add or sl t)
Need a new 1-bit ALU for the msb Binvert Operation

with an extra output from adder e

Extra output: Set a — ,J\
0
Additional MUX data input: Less o B
0 for all except Isb ":D
Set value for Isb I I
Also add overflow detection 1 + b2
-
I 3 B
: : _/
1-bit ALU with set on less than Ii_.. Set
(Fig. 4.17b) — <

w Cverflo

detection

ALU: k-bit

To operate on k-bit values,
we can connect k 1-bit ALU's

32-bit ALU is constructed using 32
1-bit ALU's
Input bits are connected in pairs
Control bits (Binvert, Operation)
are connected to each ALU
Cout from each ALU is connected to
C; , of next most significant bit ALU
(ripple carry)
C;,forlIsbis 1 for subtract operation
Set from ALU31 (msb) is connected
to Less input of ALUO (Isb)
(O input for all other ALUSs)
Overfl owfrom ALU31 is additional output

32-bit ALU (Fig. 4.18)

$

l d

a0 =——im
W

L]

L]

carryln
ALLIO

Less
CarryOut

Resultd

¥

N

a1 ——m
b —
) ——

Carryln
AL
Less

CarryCOut

¥

Resultl

p— W

L B B J

a2 —»
hé ——m
e

Carryln
ALLIZ * Result?
Less

Carryout

!

* L)
- -
-

1Carry‘|n |
w L 4

a31 ——m
b3 —m
e

Carryln * Result3]
ALLIZA Set

Less Cverflowv

ALU: k-bit

What about conditional branch?
Branch if 2 values are either equal or not equal
Easiest way to test if a == b: subtract, test result:
OR all result bits together and complement
One more refinement: combine Binvert and Carryln control values into Bnegate:
subtract: both are 1
add or logical ops: both are 0
Bnegate (1 bit) and Operation (2 bits) are 3-bit control for MUX:
control function

000 AND
001 OR

010 ADD
110 SUB

111 SLT

ALU: k-bit

Additions:
Bnegate control input
to subtract
Zero output:
inverted OR of
all outputs
Input: a, b
Control:
Bnegate
Operation
Output:
Result
Zero
Overflow

32-bit ALU with zero
detection
(Fig. 4.19)

Operation

A —e
N

Carryin ResultD

Less
CarryOut

a7 —-
N
Ny

Carryln
AL
Less

CarryOut

Fesult

Lyl

82—
[——
() ——i

Carryln
ALLZ Result?

Less
CarryOout

!

*
-
-

L]

by u
*

A3 =—
b31 =
() i

h 4 l ¥ Result31 I
Carryln

ALLIZA Set

Ty e

fero

less

- Cverflow

ALU: k-bit

Universal symbol to represent ALU
Can also be used for adder alone, so labeled accordingly

a —h\k
— oo

>ﬁLI_I [Result

— Overflow
e (

CarryCut

(Fig. 4.21)

This document was created with Win2PDF available at http://www.daneprairie.com.
The unregistered version of Win2PDF is for evaluation or non-commercial use only.

http://www.daneprairie.com

