Programmable Logic Array (PLA)

Implementing combinational circuits Boolean functions ---> gates Programmable logic array (PLA) More general implementation Start with all inputs and their negations:

Programmable Logic Array (PLA)

Add a set of AND gates with perpendicular connections (3 in this case):

Programmable Logic Array (PLA)

Minterms

Implement a truth table:	\mathbf{x}_2	\mathbf{x}_{1}	\mathbf{x}_{0}	\mathbf{z}_{1}	\mathbf{z}_{0}	
	0	0	0	0	0	
	0	0	1	1	0	$\mathbf{x}_{2}\mathbf{x}_{1}\mathbf{x}_{0}$
	0	1	0	0	0	
	0	1	1	1	0	$\mathbf{x}_2 \mathbf{x}_1 \mathbf{x}_0$
	1	0	0	1	1	$\mathbf{x}_2 \setminus \mathbf{x}_1 \setminus \mathbf{x}_0$
	1	0	1	0	0	
	1	1	0	0	0	
	1	1	1	0	1	$\mathbf{x}_2 \mathbf{x}_1 \mathbf{x}_0$

Connect the necessary inputs to each AND gate in order to contruct the minterms:

Dots indicate connections

This can be simplified by combining the inputs for each AND gate:

Now add OR gates to combine the minterms:

The vertical lines are called the AND plane

The horizontal lines are called the OR plane

We can simplify the picture even further by eliminating the gates themselves:

Programming the PLA:

Make the connections represented by the black dots

This document was created with Win2PDF available at http://www.daneprairie.com. The unregistered version of Win2PDF is for evaluation or non-commercial use only.