
Combinational circuits: ALU

ALU is a combinational circuit
outputs depend only on inputs
operations performed

AND

OR

ADD

SUB

SLT

Zero (a == b)

This is an ARITHMETIC/logic unit (Fig. 4.21)
What about multiplication?

Result depends only on inputs

1 1 1 0 0 Carry
1 1 1 Multiplicand
1 0 1 Multiplier
1 1 1 Partial products

0 0 0
1 1 1

1 0 0 0 1 1 Product

Can this be done with a combinational circuit?
Sure, but

How big is this truth table?
What would the circuit have to look like?

This gets rather large even for 4 bits. Reference:

Can we split up the problem in groups of 4? http://www-inst.eecs.berkeley.edu/~cs152/

http://www-inst.eecs.berkeley.edu/~cs152/

Multiplier

Better solution: iterate
(Fig. 4.26)

Add and shift:
Look at current bit position

If multiplier bit is 1
add multiplicand

else
add 0

Shift multiplicand

Multiplier

Multiplier circuit
(Fig. 4.26)

The efficiency of this can be improved, but there is a more fundamental problem:
How to implement the notions of:

state (registers)
update (clock)

Sequential circuits: state

Mathematical functions have no state: inputs combined to produce output, no memory

C/C++ functions may have state: store data from 1 call to another
static variables
objects store values in data members

State of a running program
Values of variables
Values of registers
Contents of stack
Address of current instruction

Hibernate laptop
Save state of entire machine, including all programs

Sequential logic circuits

Previous history is used together with inputs to produce output
We don't care HOW previous value was obtained
State encoded in bits
Finite number of bits, so finite number of states

Sequential circuits vs. combinational

Comparison to combinational
Combinational circuits implement Boolean functions

Input ---> output, no memory
Only data inputs and control inputs determine the output

Example: Coke (um, Pepsi) machine
Assume: price 75 cents, machine only accepts quarters
Action:

deposit quarter ---> no output
deposit quarter ---> no output
deposit quarter ---> drink delivered

Notice that the output was not always the same for the same input
This is not a Boolean function (combinational circuit)

Memory was used to determine output along with input
Example: linked list object

call list.size() method
What is input? empty
Does it always return same value?

No, its output is the current length of the linked list
Sequential circuit

Inputs: values x, labelled with subscripts
Outputs: values z, labelled with subscripts

Uses clock, unlike combinational circuit
State

made up of devices called flip-flops
k flip-flops store a k-bit number representing the current state
values denoted by q with subscripts

Output z computed from
inputs x
state q

Needed:
store current state
update to new state

Circuit elements
Combinational logic
Clock
State storage

Example
state input output new state
00 1 10 11

Sequential circuits: clock

"Without time, everything would happen at once."
 - Anonymous

Clock
Outside world: way to tell time
Computer: think of a metronome (number of beats, or cycles, per minute)

Measured in MHz or Ghz (millions or billions of cycles per second)
Timing diagram

x-axis: time
y-axis: voltage

values 0 and 1 are represented by low and high voltage
A clock is a device which alternates values between 0 and 1

period: time T
cycle: single alternation between 0 and 1
frequency: f = 1/T, units of Hz (cycles per second)

1 GHz means 109 cycles per second

(period is 10-9 seconds, which is 1 nanosecond)

Sequential circuits: clock

Clock edge
In each cycle, the clock transitions:

0 to 1: positive edge
1 to 0: negative edge

This does not happen instantaneously
rise time: positive edge
fall time: negative edge

Timed devices can only change state on an edge
positive triggered
negative triggered

Otherwise, they hold their value

Flip-flops

Basic building blocks
Combinational circuits: gates
Sequential circuits: flip-flops

Examples of flip-flops
State: flip-flop stores 1 bit
Inputs: control (D or T)

clock (positive edge)
Output: Q and Q' (negation)

Q is current state

Why both Q and Q'?
Because we can!
Flip-flops can be built with NOR and NAND gates, and the negated output is

essentially free
Additional input (rarely drawn)

CLR': asynchronous clear
When set to 0, Q is immediately (asynchronously) set to 0
This is called active low (consumes less power)

Flip-flops: latch

How to store a value with a circuit?
Simplest form: unclocked latch
Set-reset (S-R) latch

2 NOR gates with each output fed back
Note that this is not a valid combinational circuit

(contains a loop)
Assume:

R = 0 (Fig. B.12)
S = 0
Q = 1

Then output Q is fed back as input to the second NOR gate and negated,
producing the negation Q' = 0

Likewise, the output Q' is fed back to the first NOR gate and negated,
producing the output Q = 1

The output can be changed by asserting the value R or S:
If S = 1, then the second NOR gate produces 0, so Q continues to be 1
But, if R = 1, then the first NOR gate produces 0,

which becomes the new value of Q.

Flip-flops: latch

Characteristic table (corresponds to truth table):

Q+ represents the NEW value of Q

R S Q+

0 0 Q

0 1 1

1 0 0

1 1 undefined (Fig. B.12)

When both set and reset are 0, Q is unchanged.
When only S is 1, Q becomes 1.
When only R is 1, Q becomes 0.
When both R and S are 1, the behavior is undefined.

Flip-flops: D (delay)

By adding a clock input C and a control D,
we can set or reset the latch on a clock signal

Characteristic table for D (delay) flip-flop:

D Q Q+ Operation

0 0 0 reset

0 1 0 reset

1 0 1 set

1 1 1 set (Fig. B.13)

Note that the second column is actually output, but it is used to generate the next state.
The third column is the output at a later time.
When the clock value C is 0, then the output of both AND gates is 0, so there is no change.

(R and S inputs to NOR gates are 0)
When the clock value C is 1, then the output of the AND gates is:

D' for the first AND gate, and D for the second
This means that D acts as a set when it is 1 and a reset when it is 0.

Notice that this arrangement eliminates the possibility that both set and reset will be
1 at the same time.

Flip-flops: Toggle (T)

T (toggle) flip-flop holds the value of Q when input T is 0, and toggles when T is 1
Characteristic table for T (toggle) flip-flop:

T Q Q+ Operation

0 0 0 hold

0 1 1 hold

1 0 1 toggle

1 1 0 toggle

Is this really XOR in disguise?
Inputs of XOR

2 operands
Inputs of T flip-flop

toggle (T)
clock
current state (Q)

Input Q and output Q+ are really the same output, but at different times

When output changes
Flip-flop can change only at positive clock edge
XOR can change whenever inputs change

Flip-flops: JK

JK flip-flop has 2 control inputs
Characteristic table for T (toggle) flip-flop:

J K Q Q+ Operation JK operation
0 0 0 0 hold 0 hold

0 0 1 1 hold 1 reset

0 1 0 0 reset 2 set

0 1 1 0 reset 3 toggle

1 0 0 1 set

1 0 1 1 set

1 1 0 1 toggle

1 1 1 0 toggle

JK combines functions of D (reset/set) and T (hold/toggle)

This document was created with Win2PDF available at http://www.daneprairie.com.
The unregistered version of Win2PDF is for evaluation or non-commercial use only.

http://www.daneprairie.com

