
Finite state machines

Combinational circuit: implements Boolean function
Sequential circuit: implements finite state machine

May also contain combinational circuit
In programming languages (i.e., 330), DFA (deterministic finite automaton)

Essentially the same, but different purpose
DFA:

Q, a set of states
S, a single state which is an element of Q. This is the start state.
F, a set of states designated as the final states
Sigma, the input alphabet
delta, a transition function that maps a state and a letter from the input alphabet, 

to the next state
DFA is used to recognize a language L, which is composed of a set of strings

made up from an input alphabet
If DFA can recognize strings in the language, then L has a regular grammar

To use DFA:
Start in initial state S
Process each character in the input string, moving from state to state
If DFA in a final state after processing the last character, string in language

Example: alphabet a, b
Is string "aabb" recognized by a DFA?



Finite state machines

Finite state machine (FSM) with output
Q, a set of states
S, a single state which is an element of Q. This is the start state.
Sigma, the input alphabet

Pi, the output alphabet
delta, a transition function that maps a state and a letter from the input alphabet, 

to a state and a letter from the output alphabet
Primary differences with FSA:

No final state
Transition function generates output as well as determining next state

Purpose is not to recognize strings, but to generate set of outputs
Describes how inputs and current state generate outputs

For circuits:
Input alphabet: set of k-bit strings
Output alphabet: set of m-bit strings

Transitions from a given state must be:
Mutually exclusive: only 1 choice for any single input value
Exhaustive: all possible inputs have a transition

"Nothing happens": remain in same state



Finite state machines

Example: Start state

States: represented by circles, 2-bit values q1q0
N states require ceil(lg N) bits to represent (the ceiling of log base 2 of N)

Inputs: represented by arrows labeled x (number of bits depends on number of transitions)
2k arrows for k bits of input

Trace: State 00 (Start) 01 10 01 01 10

Input 1 1 0 0 1



Finite state machines: Moore

So far: inputs tell which state to go to next, but no outputs
Moore machines: have outputs for each state
Output for a state is written following the state itself:

01/1 state 01, output 1 q1q0 = 01, z = 1

number of output bits depends on application 
(may be more or less than for state representation)

Example:

Input x 1 1 0 1 1 0

State q1 0 0 1 0 1 0 1

q0 0 1 0 1 0 0 0

Output z1 0 1 1 1 1 0 1

z0 1 1 1 1 1 1 1



Finite state machines: Mealy

Moore machines: output is function of state
Mealy machines: output is function of state and input

output is shown on edge
Example:

In state 00, input of 1 produces output of 1: 1/1 x = 1, z = 1

Notice numbering of states: can select any combination of 2 bits

Input x 1 1 0 1 1 0

State q1 0 0 0 1 0 0 1

q0 0 1 1 1 0 1 1

Output z 0 1 0 1 1 1 1



This document was created with Win2PDF available at http://www.daneprairie.com.
The unregistered version of Win2PDF is for evaluation or non-commercial use only.

http://www.daneprairie.com

