Finite state machines: implementing
Want to implement FSM in circuit:

Steps to do this:

1. Create a state transition table
2. Decide how many flip flops you need, and what kind
3. Use the flip flop excitation table to fill out the rest of the chart
4. Implement the circuit

Steps are easy
Hard part: understanding what is going on

Finite state machines: implementing
State: 2 bits ($q_{1} q_{0}$)
2 flip-flops to store
Input: 1 bit (x)
Output: 2 bits ($z_{1} z_{0}$)

Step 1: State transition table
Start with state and input
Each row represents a state and a possible input value States before inputs:

q_{1}	q_{0}	\mathbf{x}
0	0	0
0	0	1
0	1	0
0	1	1
1	0	0
1	0	1
1	1	0
1	1	1

Finite state machines: implementing

q_{1}	q_{0}	\mathbf{x}	$\mathrm{q}_{1}{ }^{+}$	$\mathrm{q}_{0}{ }^{+}$
0	0	0	1	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	0	0
1	1	0	d	d
1	1	1	d	d

Step 1: State transition table
(a) Write next state

There is no state 11
Put d for "don't care" as next state

Finite state machines: implementing

q_{1}	q_{0}	\mathbf{x}	$\mathrm{q}_{1}{ }^{+}$	$\mathrm{q}_{0}{ }^{+}$	z_{1}	z_{0}
0	0	0	1	0	0	1
0	0	1	0	1	0	1
0	1	0	0	1	1	1
0	1	1	1	0	1	1
1	0	0	0	1	1	1
1	0	1	0	0	1	1
1	1	0	d	d	d	d
1	1	1	d	d	d	d

Step 1: State transition table
(b) Write outputs

These are just a function of the state
State 11 doesn't exist: "don't care"

Finite state machines: implementing
Step 2: Pick flip-flops
What kind?
Some combination of D and/or T
Use D_{1} to store q_{1} and T_{0} to store q_{0}
Step 3: Use the flip-flop excitation tables to determine D and T What input for D generates
an output of 1 ?
The entire column for D is a copy of $\mathrm{q}_{1}{ }^{+}$

q_{1}	q_{0}	\mathbf{x}	$\mathrm{q}_{1}{ }^{+}$	$\mathrm{q}_{0}{ }^{+}$	\mathbf{z}_{1}	\mathbf{z}_{0}	D_{1}	\mathbf{T}_{0}
0	0	0	1	0	0	1	1	
0	0	1	0	1	0	1	0	
0	1	0	0	1	1	1	0	
0	1	1	1	0	1	1	1	
1	0	0	0	1	1	1	0	
1	0	1	0	0	1	1	0	
1	1	0	d	d	d	d	d	
1	1	1	d	d	d	d	d	

Finite state machines: implementing
Step 3: Use the flip-flop excitation tables
to determine D and T
What value for T do we need to get state 0 from state 0 ?
What value for T do we need to get state 1 from state 0 ?
Fill in rest of column with hold $\left(\mathrm{q}_{0}{ }^{+}=\mathrm{q}_{0}\right)$

$$
\text { or toggle }\left(q_{0}^{+}!=q_{0}\right)
$$

q_{1}	q_{0}	\mathbf{x}	$\mathrm{q}_{1}{ }^{+}$	$\mathrm{q}_{0}{ }^{+}$	\mathbf{z}_{1}	\mathbf{z}_{0}	D_{1}	\mathbf{T}_{0}
0	0	0	1	0	0	1	1	0
0	0	1	0	1	0	1	0	1
0	1	0	0	1	1	1	0	0
0	1	1	1	0	1	1	1	1
1	0	0	0	1	1	1	0	1
1	0	1	0	0	1	1	0	0
1	1	0	d	d	d	d	d	d
1	1	1	d	d	d	d	d	d

Finite state machines: implementing
Step 4: Implement a circuit to generate the control signals
One way to do this: use a ROM (read-only memory)
Input to ROM: k-bit address
Output from ROM: contents of location at given address
Number of bits needed for address: inputs to truth table
2 bits for state +1 bit for input in this case
Number of bits at each location: number of output bits + number of flip-flops 4 bits in this case

q_{1}	q_{0}	\mathbf{x}	$\mathrm{q}_{1}{ }^{+}$	$\mathrm{q}_{0}{ }^{+}$	\mathbf{z}_{1}	\mathbf{z}_{0}	D_{1}	$\mathrm{~T}_{0}$
0	0	0	1	0	0	1	1	0
0	0	1	0	1	0	1	0	1
0	1	0	0	1	1	1	0	0
0	1	1	1	0	1	1	1	1
1	0	0	0	1	1	1	0	1
1	0	1	0	0	1	1	0	0
1	1	0	d	d	d	d	d	d
1	1	1	d	d	d	d	d	d

Finite state machines: implementing
Step 4: Implement a circuit to generate the control signals
Copy last 4 columns to ROM
Connect inputs and outputs

q_{1}	q_{0}	\mathbf{x}	$\mathrm{q}_{1}{ }^{+}$	$\mathrm{q}_{0}{ }^{+}$	\mathbf{z}_{1}	\mathbf{z}_{0}	D_{1}	$\mathrm{~T}_{0}$
0	0	0	1	0	0	1	1	0
0	0	1	0	1	0	1	0	1
0	1	0	0	1	1	1	0	0
0	1	1	1	0	1	1	1	1
1	0	0	0	1	1	1	0	1
1	0	1	0	0	1	1	0	0
1	1	0	\mathbf{d}	d	d	d	d	d
1	1	1	d	d	d	d	d	d

Finite state machines: implementing

Notes:

Label the address bits: $\mathrm{A}_{2} \mathbf{A}_{1} \mathbf{A}_{0}$
Connect inputs to address bits in order: $\mathrm{q}_{1} \mathrm{q}_{0} \mathrm{x}$
Label ROM addresses: 000 to 111
Label ROM data columns: $Z_{1} Z_{0} D_{1} T_{0}$ Don't include next state in ROM. Where does it go?
D_{1} and T_{0} feed back to flip-flop inputs
Leave the "don't cares" as they are
Circle input x to show it comes from an external source
Square the outputs \mathbf{z} to show they are external
"Don't forget the stinkin' clock"

Finite state machines: implementing

How it works:
Assume state 00, input 0
Select ROM address 000, data 0110
Output is 01
Next state is determined by $D_{1}=1, T_{0}=0$
Q_{1} becomes 1 (D input)
Q_{0} becomes 0 (hold)
Next state is 10
Try other states and inputs

Finite state machines: implementing

How else could we implement the circuit?

Inputs			Next		Outputs				Minterms\mathbf{z}_{1}
q_{1}	q_{0}	\mathbf{x}	$\mathrm{q}_{1}{ }^{+}$	$\mathrm{q}_{0}{ }^{+}$	z_{1}	z_{0}	D_{1}	T_{0}	
0	0	0	1	0	0	1	1	0	
0	0	1	0	1	0	1	0	1	
0	1	0	0	1	1	1	0	0	$\backslash q_{1} q_{0} \backslash x$
0	1	1	1	0	1	1	1	1	$\backslash q_{1} q_{0} x$
1	0	0	0	1	1	1	0	1	$q_{1} \backslash q_{0} \backslash x$
1	0	1	0	0	1	1	0	0	$\mathrm{q}_{1} \backslash \mathrm{q}_{0} \mathrm{x}$
1	1	0	d	d	d	d	d	d	
1	1	1	d	d	d	d	d	d	

Simplified:

$$
\begin{aligned}
& z_{1}=q_{1}+q_{0} \\
& z_{0}=1 \\
& D_{1}=\backslash q_{1}\left(\backslash q_{0} \backslash x+q_{0} x\right) \\
& T_{0}=\backslash q_{1} x+q_{1} \backslash x
\end{aligned}
$$

Implement using AND and OR gates or PLA

Finite state machines: implementing

q_{1}	q_{0}	\mathbf{x}	$\mathrm{q}_{1}{ }^{+}$	$\mathrm{q}_{0}{ }^{+}$	z
0	0	0	1	1	1
0	0	1	0	1	1
0	1	0	1	1	1
0	1	1	0	1	0
1	0	0	d	d	d
1	0	1	d	d	d
1	1	0	0	1	0
1	1	1	0	0	1

In state 01, input of 0 gives state 11 and output 1 In state 01, input of 1 gives state 01 and output 0 In state 11, input of 0 gives state 01 and output 0 In state 11, input of 1 gives state 00 and output 1

Rest of steps:

- pick flip-flops
- use excitation tables
- draw circuit (ROM, gates, or PLA)

This document was created with Win2PDF available at http://www.daneprairie.com. The unregistered version of Win2PDF is for evaluation or non-commercial use only.

