
Single-cycle datapath

Fig. 5.1

Single-cycle implementation
Assume each instruction is executed in 1 clock cycle
Each component (memory, ALU, etc.) can be used only once

Reason for assuming separate instruction and data memories
Advantage: simpler to design
Disadvantage: speed of machine is determined by time for longest path

Memory access is much slower than register access,
but most instructions use only registers

Better: each instruction type can take different number of clock cycles
Common elements for all instructions

Instruction fetch, PC update
Access 1 or 2 registers

Instruction fetch

Fig. 5.4

Instruction fetch: used by all instructions
Memory

Input: instruction address
Output: instruction
how to build: defer until later

Program counter
Register containing address of current instruction ("hidden")

Adder: ALU with only one operation
Combinational circuit
Input: 2 operands
Output: sum

Instruction fetch

Fig. 5.5

Instruction fetch
PC gives address to instruction memory
Memory outputs instruction contents

Increment PC
PC value is first operand input to adder
Constant 4 is second operand input to adder
PC + 4 is stored back in PC

Repeat once each clock cycle

Register access: R-type

Components
Register file: 32 registers Fig. 5.6

Inputs
2 read register numbers (5 bits each)
1 write register number (5 bits)
write data (32 bits)

Outputs: 2 read data values (32 bits each)
Control: RegWrite determines whether to write data to target register (1 bit)

ALU: performs arithmetic/logical operations
Inputs: 2 data values (32 bits each)
Outputs

Result of operation (32 bits)
Zero: result is equal to 0 (1 bit)

Control: ALU control selects operation (3 bits)

Register access: R-type

Components
Register file: 32 registers
ALU: performs arithmetic/logical

operations

Fig. 5.7
Register read

Instruction gives addresses of 2 read registers and 1 write register to register file
2 data read values are given by register file to inputs of ALU

R-type operation
3 ALU operation control bits are used to determine what operation is required
ALU result is returned to write data input of register file
ALU also has an output called Zero (indicates whether result of operation equals 0)
Note that RegWrite control input is used to determine if result is written

to the write register

Single-cycle datapath

The story so far:
Implementing R-type, memory access, and branch/jump instructions
Single-cycle datapath: each instruction takes 1 clock cycle

Common elements:

Register access

Instruction fetch and PC update

R-type operation: ALU

Load and store

Load and store instructions
lw $rt, offset($rs)

sw $rt, offset($rs)

Requirements
Add 16-bit offset value to contents of base register $rs

extend 16-bit value to 32 bits for addition
For load instruction, write value from memory into register $rt
For store instruction, read data value from register $rt

Load and store

Fig. 5.8
Components

Data memory
Inputs

Address (32 bits)
Write data (32 bits)

Output: Read data (32 bits)
Controls

MemRead
MemWrite

Sign extend
Input: 16 bit data
Output: 32 bit data with sign bit repeated 16 times

Load and store

Fig. 5.9

Instruction provides read and write register numbers, 16-bit offset
Register file provides

Read data 1: base register value to ALU
Read data 2: data value to be stored in data memory

Sign extend provides 32-bit offset value to ALU for addition
ALU generates sum of base and offset as address input to data memory
MemRead, MemWrite controls determine whether to read or write data memory

For load (read), data memory provides data for register write
For store (write), data memory writes data to memory location given by address

Branch

Branch on equal
beq $rs, $rt, offset

Requirements
Compare contents of 2 registers
Shift 16-bit offset left by 2 bits to get word address
Add shifted offset value to value of PC + 4 to get branch target address
Update PC with branch target if operands are equal (branch is taken)

Two operations: compare and add
Also modify instruction fetch datapath to allow PC to be updated with new value

Jump requires different address calculation
Replace lower 28 bits of PC with 26 bits from instruction, shifted left 2 bits
To be added later

Branch

Fig. 5.10
Instruction provides read register numbers to register file, offset to sign extend
Registers give operand input to ALU for comparison (which ALU operation?)
ALU generates Zero output (what value?) to branch control
Sign extend provides 32-bit value to shifter, which shifts left by 2 bits
Adder computes branch target for possible PC update using:

Offset from shifter
PC + 4 from instruction datapath

This document was created with Win2PDF available at http://www.daneprairie.com.
The unregistered version of Win2PDF is for evaluation or non-commercial use only.

http://www.daneprairie.com

