
Multi-cycle datapath

Multi-cycle implementaion: break up instructions into separate steps
Each step takes a single clock cycle
Each functional unit can be used more than once in an instruction,

as long as it is used in different clock cycles
Reduces amount of hardware needed
Reduces average instruction time

Differences with single-cycle
Single memory for instructions and data
Single ALU (no separate adders for PC or branch calculation)
Extra registers added after major functional units to hold results between clock cycles

Fig. 5.30

Note that data needed in a later instruction must be in one of the
programmer-visible registers or memory

Assume each clock cycle includes at most one of:
Memory access
Register file access (2 reads OR 1 write)
ALU operation

Any data produced from 1 of these 3 functional units must be stored between cycles
Instruction register: contains current instruction
Memory data register: data from main memory

Why 2 separate registers? Because both values are needed simultaneously
Register output A, B

2 operand values read from register file
ALUOut

Output from ALU
Why is this needed? Because we are combining adders into the ALU,

so we need to select where the output goes (register file or memory)
All these registers except IR hold data only between consecutive clock cycles,

so don't need write control signal
What else do we need?
Because functional units are used for multiple purposes:

More MUXes

More inputs for existing MUXes

Multi-cycle datapath

MUX example 1:
One memory is used for instructions and data, so we need a MUX to select between:

PC (instruction)
ALUout (data)
for address to access in memory

Where else? (Hint: Consider ALU)

MUX example 2:
One ALU is used to perform all arithmetic and logic operations, so we need a MUX

to select first operand between

PC
Data register A

Also, for second operand:
Data register B

Sign-extended immediate
Sign-extended/shifted immediate (offset for branch)
Constant 4 (incrementing PC)

Multi-cycle datapath

Datapath with MUXes for selection:

MUX 1: select between PC and ALUOut for memory address Fig. 5.31
MUX 2: select between $rt and $rd for destination (write) register address
MUX 3: select between ALUOut and memory data for write data input to register file
MUX 4: select between PC and register data A for first operand input to ALU
MUX 5: select between

register data B
constant 4
sign-extended immediate
sign-extended, shifted immediate

for second operand input to ALU

1

2

3

4

5

Multi-cycle datapath

Control signals needed to select inputs, outputs
Need write control:

Programmer-visible units
PC, memory, register file

IR: needs to hold instruction until end of execution
Need read control:

memory
ALU Control: can use same control as single-cycle
MUXes: single or double control lines (depending on 2 or 4 inputs)

Multi-cycle datapath: control signals

New control signals Fig. 5.32
IorD: selects PC (instruction) or ALUOut (data) for memory address
IRWrite: updates IR from memory (when?)
ALUSrcA: control to select PC or reg A (read data 1 from register file)

output is first operand for ALU
ALUSrcB: control to select second operand for ALU among 4 inputs:

0: reg B (read data 2 from register file)
1: constant 4
2: sign-extended immediate from instruction
3: above value shifted left by 2

Multi-cycle datapath: control signals

What else is needed? Branches and jumps

Possible sources for PC value: Fig. 5.33
(PC + 4) directly from ALU
ALUout: result of branch calculation
Result of concatenation of left-shifted 26 bits with upper 4 bits of PC (jump)

Note that the PC is updated both unconditionally and conditionally,
so 2 control signals are needed

PCWriteCond: ANDed with ALU Zero to control PC update for branch
This result is ORed with PCWrite

PCSource: controls MUX to select input to PC
0: ALU result
1: ALUOut
2: Jump address
Why do we need both 0 and 1 inputs?

Control signals are listed in Fig. 5.34

Multi-cycle datapath: instruction execution

Breaking instruction execution into multiple clock cycles:
Balance amount of work done in each cycle (minimizes the cycle time)
Each step contains at most one:

Register access
Memory access
ALU operation

Any data values which are needed in a later clock cycle are stored in a register
Major state elements: PC, register file, memory
Temporary registers written on every cycle: A data, B data, MDR, ALUOut
Temporary register with write control: IR

Note that we can read the current value of a destination register:
New value doesn't get written until next clock cycle

Multiple operations can occur in parallel during same clock cycle
Read instruction and increment PC

Other operations occur in series during separate clock cycles
Reading or writing standalone registers (PC, A data, B data, etc.) done in 1 cycle
Register file access requires additional cycle: more overhead for access and control

Instruction execution steps
1. Fetch instruction from memory and compute address of next sequential instruction
2. Instruction decode and register fetch
3. R-type execution, memory address computation, or branch
4. Memory access or R-type instruction completion
5. Memory read completion

Multi-cycle datapath: instruction fetch

1. Fetch instruction from memory and compute address of next instruction Fig. 5.33
Operation:

IR = Memory[PC];

PC = PC + 4;
Control signals needed

MemRead, IRWrite asserted
IorD set to 0 to select PC as address source

Increment PC by 4:
ALUSrcA = 0: PC to ALU
ALUSrcB = 01: 4 to ALU
ALUOp = 00: add

Store PC back
PCSource = 00: ALU result
PCWrite = 1

The memory access and PC increment can occur in parallel. Why?
Because the PC value doesn't change until the next clock cycle!

Where else is the incremented PC value stored?
ALUOut

Does this have any other effect? No

Multi-cycle datapath: decode

2. Instruction decode and register fetch
What do we know about the type of instruction so far? Nothing!
So, we can only perform operations which apply to all instructions,

or do not conflict with the actual instruction
What can we do at this point?

Read the registers from the register file into A and B
Compute branch address using ALU and save in ALUOut

But, what if the instruction doesn't use 2 registers, or it isn't a branch?
No problem; we can simply use what we need once we know what

kind of instruction we have
This is why having a regular instruction pattern is a good idea

Is this inefficient?
It does use up a little more power and generate some heat, but it doesn't cost any TIME
In fact, it means that the entire instruction can be executed in fewer clock cycles

Operation:
A = Reg[IR[25-21]];
B = Reg[IR[20-16]];
ALUOut = PC + sign_extend (IR[15-0]) << 2;

What are the control signals to determine whether to write registers A and B?
There aren't any! We can read the register file and store A and B on EVERY clock cycle.

Branch address computation:

ALUSrcA = 0: PC to ALU
ALUSrcB = 11: sign-extended/shifted immediate to ALU
ALUOp = 00: add

These operations occur in parallel.

Multi-cycle datapath: ALU, memory address, or branch

3. R-type execution, memory address computation, or branch
ALU operates on the operands, depending on class of instruction
Memory reference:

ALUOut = A + sign_extend (IR[15-0]);
Operation: ALU creates memory address by adding operands
Control signals

ALUSrcA = 1: register A
ALUSrcB = 10: sign-extension unit output
ALUOp = 00: add

Arithmetic-logical operation (R-type):
ALUOut = A op B;
Operation:
ALU performs operation specified by function code on values in registers A, B
(Where did these operands come from?
 They were read from the register file on the previous cycle.)
Control signals

ALUSrcA = 1: register A
ALUSrcB = 00: register B
ALUOp = 10: use function code bits to determine ALU control

Branch:
If (A == B) PC = ALUOut;

Operation:
ALU compares A and B. If equal, Zero output signal is set to cause branch,

and PC is updated with branch address
Control signals

ALUSrcA = 1: register A
ALUSrcB = 00: register B
ALUOp = 01: subtract
PCWriteCond = 1: update PC if Zero signal is 1
PCSource = 01: ALUOut

(What is in ALUOut, and how did it get there?
 It's the branch address calculated from the previous cycle, NOT the result of A - B.
 Why not? Because ALUOut is updated at the END of each cycle.)
Note that PC is actually updated twice if the branch is taken:

Output of the ALU in the previous cycle (instruction decode/register fetch),
From ALUOut if A and B are equal

Could this cause any problems? No, because only the last value of PC
is used for the next instruction execution.

Jump:
PC = PC[31-28] || (IR[25-0] << 2);
Operation:

PC is replaced by jump address.
(Upper 4 bits of PC are concatenated with 26-bit address field of instruction

shifted left by 2 bits)
Control signals

PCSource = 10: jump address
PCWrite = 1: update PC

(Where did the jump address come from?
Output of shifter concatenated with upper 4 bits of PC.)

Multi-cycle datapath: memory access/ALU completion

4. Memory access or R-type instruction completion
Load or store: accesses memory
Arithmetic-logical operation writes result to register

Memory reference
MDR = Memory[ALUOut]; or
Memory[ALUOut] = B;
Operation:

If operation is load, word from memory is put into MDR.
If operation is store, memory location is written with value from register B.

(Where does memory address come from?
 It was computed by ALU in previous cycle.

Where does register B value come from?
It was read from register file in step 3 and also in step 2.)

Control signals
MemRead = 1 (load) or
MemWrite = 1 (store)
IorD = 1: address from ALU, not PC

What about MDR?
It's written on every clock cycle.

Arithmetic-logical operation
Reg[IR[15-11]] = ALUOut;

Operation:
ALUOut contents are stored in result register.
Control signals

RegDst = 1: use $rd field from IR for result register
RegWrite = 1: write the result register
MemtoReg = 0: write from ALUOut, not memory data

Multi-cycle datapath: memory read completion

5. Memory read completion
Value read from memory is written back to register
Reg[IR[20-16]] = MDR;
Operation:

Write the load data from MDR to target register $rt
Control signals

MemtoReg = 1: write from MDR
RegWrite = 1: write the result register
RegDst = 0: use $rt field from IR for result register

Multi-cycle datapath: summary

Fig. 5.35
Summary of execution steps

Instruction fetch, decode, register fetch same for all instructions

This document was created with Win2PDF available at http://www.daneprairie.com.
The unregistered version of Win2PDF is for evaluation or non-commercial use only.

http://www.daneprairie.com

