Multi-cycle control: FSM

As in single-cycle case, need to generate control signals for MUXes, etc.

Can no longer be combinational, however. Why?

Use FSM to represent states, inputs, outputs

Start

!

Instruction fetch/decode and register fetch
(Figure 5.37)

w r

kL

Memory access
instructions
(Figure 5.38)

F-type instructions
(Figure 5.39)

Branch instruction
{Figure 5.40)

Jump instruction
(Figure 5.41)

Fig. 5.36



Multi-cycle control: FSM

Instruction decodes
Reqgister fetch

Instruction fetch

0

MemRead
ALUSICA =0

=1
l?FEEE:.'rlt'?:] JEILIJSF':JEI = |:|
Start ALUSICE = 01 ALUSICE = 11
ALUOp = 00 ALUOp = 00

PCWrite

(Op = "JMP")

¥
Memory reference FSM R-type FSM Eranch FSM Jump FSM
(Figure 5.38) (Figure 5.39) (Fiqure 5.40) (Figure 5.41)

State O: Instruction fetch
State 1. Decode/Register fetch

OP Next state

lw/sw Memory reference FSM
R-type R-type FSM

beq Branch FSM

] Jump FSM

Fig. 5.37



Multi-cycle control: memory-reference FSM

From state 1
(Op = "LW' ) or (Op = "SW')

Memaory address computation

ALUSICA = 1
ALUSICE = 10
ALUOp = 00

Op="LW")

Memaory

Memaory
ACCess ACCES:

ACCess

MemRead
lorhy = 1

Memiirite
lorl = 1

Write-back step

L To state O
© (Figure 5.37)

RegWrite
MemtoReg = 1
RegbDst =0

From state 1 (decode/register fetch)
State 2: Memory address calculation
LW: to state 3
SW: to state 5
State 3: Memory read
To state 4
State 5: Memory write
To state O
State 4. Write register
To state O (fetch)

Fig. 5.38



Multi-cycle control: complete FSM

Instruction decodes
Instruction fetch register fatch
(]
MemRead 1
ALUSICA = 0
loD =0 ALUSEA =0
Start IRWrite o ALUSICR = 11 Common part
ALLSEE = 01 ALUOp = 00
ALUDp = 00
PCWrite
PCSource =
- ™ —_
Rl & =
B o & 1]
Memory address o » - o
computation o VORC Exmcutian !I’I';::I'_-L'I: . & (=) J.l|||||1
Y - “omy completlan
.kg-;\ ; =]
ALUSIEA ALUSMEA =1
e =1 ALUSrcA =1 ALLISICE = 00 .
ALUSKCE =10 ALLSICE = 00 ALUOp = 01 ~ PCWrite . _ e
ALLOp = 00 AlOn 10 e, PCSource = 10 Instruction-specific
PCSource = o1
g % .
j-—'l' b
i &I"_;-' -
S Memory fMemaory
Ty ACLesS AcCess Retype completlon
5
RegDst = 1
MemReoad Reghte
lorD =1 MemtoReg = 0
Writeback step
4
Reghst=0
Redq®te -
MemtoReg =1

Fig. 5.42



Multi-cycle datapath: performance

Instruction Cycles Distribution
type

R-type 4 49%

load 5 22%
store 4 11%
branch 3 16%
jump 3 2%

Average cycle time:
049*4+0.22*5+0.11*4+0.16 *3+0.02*3=4.03

4.03/5 = 81% of critical path time (load)



Control: implementation

Moore machine

Input:
6 opcode bits
Op0-Op5
4 state bits (10 states)
S0-S3
Output:

13 control signals
3 are multiple-bit
4 next-state bits
NSO-NS3
Current state stored in state register
Control logic: combinational circuit
controls depend only on state
next-state depends on
current state
opcode

PCWrite
PCWrite Cond
lor
MemRead
Flemiirite
) IRWirite
Control logic MemtoRed
PCSource
ALUOR
Cutputs ALLSICB
ALUSrcA
Reqgiirite
RegDst
NS3
Hx__._.
NS
Inputs NS0
A
-
7 F [ 4 ] F r -
C¥) = ] (5] — [
ol o o g 2 = o — -
o =] =] =] =] =) T - =
Instruction register tate register
opcode field r r I |

Fig. C.7




Control: PLA

Control logic implemented in PLA

Input:

6 opcode bits

4 state bits (10 states)
Output:

16 control bits

4 next-state bits
Current state stored in state register

g

T

Op3

?

s
_+_

i

-

+

T

51

:

50 f’ ttt I
+—L——. Tl L
i\
17
!
HHH
1
1T
L L 4
NN
I T
¥ HHH

Y

PCWIrite
PCWriteCond
lorD
MemRead
Memirite
IRWrite
MemtoReg
PCSource
PCSourced
ALl I-:||.'|
ALLIC i i)
ALUSICE
ALUSICcBO
ALUSrCA
RegWrite
ReqgDst
MNS3

MS1

MS0

Fig. C.14



Multi-cycle control: microprogram

Disadvantages of FSM
Very complex for 100 instructions, even with MIPS architecture
Instructions take 1-20 clock cycles
Large number of states: 100s or more
Microprogram: another level of abstraction, simplifies control design
Each microinstruction specifies the set of control signals in a given state
Executing a microinstruction: assert the specified control signals
Sequencing:
Unconditional: go to single next state
Conditional: next state depends on input
Microinstruction format
Series of fields: each field specifies set of control signals
Signals never asserted simultaneously may share same field

ALU control ! Specify the”r:rperatian being done by the ALU duriﬁg this clock; the result is
always written in ALUDut :

SRC:L Speclfy the source for the first ALU operand. - |

SRCE - Spemw the source for the secnnd ALU nperand R '

| Register control Speclfy read or write for the reglster flle and the source of the value for a write.
Memory Spemw read?};fité and the source for the memory. For a read _épémfy the |
| destination register.
PCWrite control Specify the writing of the PC. ]
Seqguencing o SQemfy how to chnose the next microinstruction to be executed.

Fig. 5.44



Multi-cycle control: microprogram

Microprogram implementation: ROM or PLA
Each microinstruction has address, represents 1 clock cycle

Selection of next instruction

Increment address: seq
Begin executing next MIPS instruction: fetch
Jump to microinstruction based on control input: dispatch

Blank fields

Table contains addresses of jump targets

Indexed by control inputs
Multiple tables indicated by value i in sequencing field

Functional unit or write control not asserted
MUX: don't care
Example: instruction fetch

Label | ALUCon | SRC1 SRC 2 | RegCntl Mem PC Write | Sequence
Fetch Add PC 4 ReadPC ALU Seq
Add PC Extshft read Dispatch 1
First microinstruction:
Fields Effect

ALU control. SRC 1. SRC 2

Comnute PC + 4




ALU control, SRC 1, SRC 2

Compute PC + 4

Memory

Fetch the instruction to IR

PCWorite control

QOuput of ALU is loaded into PC

Sequencing

Go to the next microinstruction

Second microinstruction:

Fields

Effect

ALU contrel, SRC 1, SRC 2

Store PC + sign extension (IR [15-0])

<< 2 into ALUOut

Register control

Moves the data from the register file to A & B

Sequencing

Use dispatch table 1 for next address

Similar sets of microinstructions for:
memory access (load/store)
R-type instructions
branch
jump




Multi-cycle control: microprogram

Complete microprogram

Label [ ALUCon | SRC 1 SRC 2 | RegCntl Mem PC Write | Sequence
fetch Fetch Add PC 4 ReadPC ALU Seq
Add PC Extshft read Dispatch 1
memory | Mem 1| Add A Exend Dispatch 2
Lw2 Read ALU seq
Write Mem Fetch
SW2 Write ALU Fetch
R-type Rfor1l [FuncCode A B seq
Write ALU Fetch
branch | geq1 | subtr A B AluOutC| Fetch
jump Jump1 JpAdr Fetch
Fig. 5.46

Note 10 microinstructions (1 for each state)

Sequence:

More complex machines: 100s or 1000s of microinstructions

Dispatchl: go to label ending in 1 (Mem1, Rforl, BEQ1, Jumpl)
Dispatch?2: go to label ending in 2 (LW2, SW2)



May also have more temporary registers for holding intermediate results

Memory access:

Fields

Effect

ALU control, SRC 1, SRC 2

Memory address = rs + sign extend (IR[15-0])

result available at the ALU output

Sequencing

Use 2nd dispatch tabel for continuation

at SW2or LW 2

Load: Fields Effect
Memory Read memory and write to MDR
Sequencing Go to the next microinstruction
Fields Effect
Register control Write the contents of the MDR to register rt
Sequencing Go to the label Fetch
Store: Fields Effect

Memory

Write memory with ALUOut as address

Sequencing

Go to the label Fetch




This document was created with Win2PDF available at http://www.daneprairie.com.
The unregistered version of Win2PDF is for evaluation or non-commercial use only.



http://www.daneprairie.com

