
Multi-cycle control: FSM

As in single-cycle case, need to generate control signals for MUXes, etc.
Can no longer be combinational, however. Why?
Use FSM to represent states, inputs, outputs

Fig. 5.36

Multi-cycle control: FSM

Fig. 5.37

State 0: Instruction fetch
State 1: Decode/Register fetch

OP Next state
lw/sw Memory reference FSM
R-type R-type FSM
beq Branch FSM
j Jump FSM

Multi-cycle control: memory-reference FSM

From state 1 (decode/register fetch)
State 2: Memory address calculation

LW: to state 3
SW: to state 5

State 3: Memory read
To state 4

State 5: Memory write
To state 0

State 4: Write register
To state 0 (fetch)

Fig. 5.38

Multi-cycle control: complete FSM

Common part

Instruction-specific

Fig. 5.42

Multi-cycle datapath: performance

Instruction Cycles Distribution
type
R-type 4 49%
load 5 22%
store 4 11%
branch 3 16%
jump 3 2%

Average cycle time:
0.49 * 4 + 0.22 * 5 + 0.11 * 4 + 0.16 * 3 + 0.02 * 3 = 4.03

 4.03/5 = 81% of critical path time (load)

Control: implementation

Moore machine
Input:

6 opcode bits
Op0-Op5

4 state bits (10 states)
S0-S3

Output:
13 control signals

3 are multiple-bit
4 next-state bits

NS0-NS3
Current state stored in state register
Control logic: combinational circuit

controls depend only on state
next-state depends on

current state
opcode

Fig. C.7

Control: PLA

Control logic implemented in PLA

Input:
6 opcode bits
4 state bits (10 states)

Output:
16 control bits
4 next-state bits

Current state stored in state register

Fig. C.14

Multi-cycle control: microprogram

Disadvantages of FSM
Very complex for 100 instructions, even with MIPS architecture
Instructions take 1-20 clock cycles
Large number of states: 100s or more

Microprogram: another level of abstraction, simplifies control design

Each microinstruction specifies the set of control signals in a given state
Executing a microinstruction: assert the specified control signals
Sequencing:

Unconditional: go to single next state
Conditional: next state depends on input

Microinstruction format
Series of fields: each field specifies set of control signals
Signals never asserted simultaneously may share same field

Fig. 5.44

Multi-cycle control: microprogram

Microprogram implementation: ROM or PLA
Each microinstruction has address, represents 1 clock cycle
Selection of next instruction

Increment address: seq
Begin executing next MIPS instruction: fetch
Jump to microinstruction based on control input: dispatch

Table contains addresses of jump targets
Indexed by control inputs
Multiple tables indicated by value i in sequencing field

Blank fields
Functional unit or write control not asserted
MUX: don't care

Example: instruction fetch

First microinstruction:

Second microinstruction:

Similar sets of microinstructions for:
memory access (load/store)
R-type instructions
branch
jump

Multi-cycle control: microprogram

Complete microprogram

fetch

memory

R-type

branch
jump

Fig. 5.46
Note 10 microinstructions (1 for each state)
Sequence:

Dispatch1: go to label ending in 1 (Mem1, Rfor1, BEQ1, Jump1)
Dispatch2: go to label ending in 2 (LW2, SW2)

More complex machines: 100s or 1000s of microinstructions

May also have more temporary registers for holding intermediate results

Memory access:

Load:

Store:

This document was created with Win2PDF available at http://www.daneprairie.com.
The unregistered version of Win2PDF is for evaluation or non-commercial use only.

http://www.daneprairie.com

