
Memory

What do we use for accessing small amounts of data quickly? Registers (32 in MIPS)
Why not store all data and instructions in registers?
Too much overhead for addressing; lose speed advantage

Register file can use 5-32 decoder or 32-1 MUX to select
Memory (RAM) is organized in larger quantities

Vcc, Vdd: voltages (5 volts and ground), necessary to power the chip, but do not affect logic
A9-0: Address input (10 bits) Why 10 bits?
R/W': read/not write, selects read or write

1: read, 0: write
CE: chip enable, allows read or write; when 0, neither read nor write

also called chip select
D7-0: 8 bits of data read or to be written

may be bidirectional, or 16 separate lines (pins on the chip)
Where do the inputs come from? CPU

Memory

How do we get larger amounts of memory?
Think of memory as abstraction

4K memory: like byte array M[4095]
Give memory index of byte, get data value back
Use 4 1K chips

Each chip has elements C[0] up to C[1023]
Chips are numbered 00, 01, 10, 11
Each chip contains 1024 of the elements (0 to 1023, 1024 to 2047, etc.)
Where is element M[1025]?

Chip 01 at index 1
Where is element M[3071]?

Chip 10 at index 1023

Memory

Problem:
How long does it take to get 4 bytes?
If the data is word-aligned, and it takes time T to get 1 byte, it will take time 4T

to get 4 bytes (4 accesses to the same chip)
Why is word alignment significant?

Solution: put consecutive bytes on different chips. This is called interleaving.

M[0] on Chip 00, M[1] on Chip 01, M[2] on Chip 10, M[3] on Chip 11,
and M[4] back on Chip 00

If data is word-aligned, first byte always appears on chip 00
Also, the other bytes are at the same address on the other chips

Allows accessing an entire word in time T
Where is M[5]? Chip 01, index 1
In general, where is M[i]? Think of the address in binary.

The chip is at i % 4 The chip is the low two bits.
The index is at i / 4 The index is bits B11-2.

Memory: chip enable

Need to generate signals to determine which addresses to access in memory
Logic for chip enable

CPU can generate 3 control signals:
B which indicates that the CPU wants to access a byte
H which indicates that the CPU wants to access a halfword
W which indicates that the CPU wants to access a word

Which chips are enabled?
B: 1 chip
H: 2 chips
W: all 4 chips

Address patterns:
addresses on chip 00 end in 00 (divisible by 4)
addresses on chip 01 end in 01 (congruent to 1 mod 4)
addresses on chip 10 end in 10 (congruent to 2 mod 4)
addresses on chip 11 end in 11 (congruent to 3 mod 4)

Logic for chip 00:
If W = 1, then all four chips are enabled
If B = 1, select chip 00 when A1A0 = 00
If H = 1, select Chip 00 if A1 = 0 (already know that A0 = 0)

Boolean expression:
 CE = W + (H * A1') + (B * A1'A0')

Notice address bits A9-0:
To get M[i], access index i / 4
Same as shifting to the right by 2 bits, or accessing bits 11-2 from the address bus

Chip 10:
 CE = W + (H * A1) + (B * A1A0')

Invalid addresses:
we assume that the other 20 bits of the address are all 0

Memory: locality

Memory hierarchy
Registers: small and fast
RAM: large and slow
Ideal: large and fast
Solution: range of memories from fast to slow

Fig 7.1
If memory accesses are random, can't do much, but programs typically have:

spatial locality: successive memory accesses tend to be close together in location

 - sequential execution
 - branches tend to be relatively small
 - arrays

temporal locality: location, once accessed, will tend to be accessed again

within a small amount of time (loop: instructions and data)

Memory: cache

Memory hierarchy
As distance from CPU increases, so does size

Fig 7.3

To take advantage of:
temporal locality: keep recently used data closer to CPU
spatial locality: when moving data to a higher level, move a contiguous block

Miss: requested data not found in currrent level
Hit: requested data is found in current level
Hit rate: how often a requested data item is found in a given level of the hierarchy

If hit rate at the top levels of the hierarchy is large, then the average access time
will be close to the fastest access time

Cache: level in hierarchy between CPU and main memory

Memory: levels

Data is transferred only between adjacent levels:
When miss occurs at one level of hierarchy, data is transferred from next lower level

Minimum unit of data transferred: block

Performance depends on speed of hits and misses
Hit time: time to access upper level,

including determining hit or miss
Miss penalty: time to access lower level to get data

Issues
How much data to transfer between levels
Policy to replace data in upper levels
Policy to update data in each level

Analogy
Need 10 books for a term paper Fig. 7.2
Bring all 10 books back to your desk,

instead of going back to library 10 times

Memory: cache

Fig 7.4

Consider simple cache
Processor requests are each 1 word
Cache blocks are 1 word

Processor makes reference to word Xn, and Xn is not currently in the cache: cache miss

If there is space in the cache, then word Xn is copied into the cache
2 questions:

How do we know if a data item is in the cache now?
If so, where is it located?

Simplest method:
Base cache address directly on memory address: direct mapped cache

(Notice they are not equal, since the cache is smaller)
Typical method:

(block address) mod (number of cache blocks in whole cache)
Easy to compute if number of cache blocks is power of 2: use low order n bits of address

where n is log 2 (number of cache blocks)

Example:

Fig 7.5

Cache of 8 words
Each data word is mapped to location whose address ends in same 3 bits
For example, all the gray words have addresses ending in 001,

mapped to cache block 001
Each cache location can contain several possible data words

If a word is in the cache, how do we know which one it is?
Add tags to the cache entries

Tag needs to contain only the upper bits of the address

In example, only need upper 2 bits for tag
Also need to recognize whether block is empty: valid bit

Managing cache

How to manage cache efficiently?
Temporal locality

copy data into cache when accessed
Spatial locality

copy 2k block of data including accessed data item
How to choose range of addresses to copy?

Might choose data from addr - delta to addr + delta
where delta is 2k-1

However, this is not so convenient to manage
Instead, use all addresses with same upper n-k bits
Example:
Want to access data with address A31-0.
Copy 32 bytes with addresses:

A31-5 00000

A31-5 00001

A31-5 00010

 . . .
A31-5 11111

These 32 bytes are called a cache line.
The upper 27 bits are the tag.

Managing cache

Cache line is stored in cache slot:

Actual data: cache line (data block)
Offset: k-bit address of data within cache line

V: valid bit
D: dirty bit

If data block valid, D = 1 indicates data has been modified since put in cache
Tag: upper 32-k bits

Number of bits per cache slot in this example:
2 bits for V and D + 27 bits for tag + 32 * 8 bits for data = 285

Managing cache: issues

Cache misses: types
compulsory: first reference to a data item
capacity: not enough space in cache

too few slots
cache line too small

conflict: space is available, but data block already stored at that location
2 cache lines map to same cache slot

Instruction and data cache
instructions and data have different access patterns, use different memory areas
use separate instruction and data caches

one reason to have separate instruction and data memories in datapath
Modifying data in the cache

write-back: update main memory only when block is removed from cache
saves time required to write main memory for each store

write-through
update main memory at the same time as cache
save time by continuing execution while main memory write completes

Replacement policy
how to choose cache line to replace

LRU: least recently used: slot which has not been used in the longest time
LFU: least frequently used
FIFO: first in, first out: slot which has been in the cache the longest
Random: may be only 10% worse than LRU

may require additional hardware to keep track

Cache: fully-associative

More flexible cache management
fully-associative

Assume cache consists of 27 = 128 slots, with 25 = 32 bytes per cache line

Address A31-0 consists of tag bits A31-5 and offset A4-0

If data not in the cache, pick a slot
Fully-associative cache: may go in any slot

Pick one with V = 0
If none, evict a slot using replacement policy (LRU, FIFO, etc.)

How do we know if a cache line is in the cache?
Must search every slot, but hardware can search in parallel, unlike software
Compare the address tag bits with the tags of each slot in the cache

Can be done using a comparator (combinational circuit using XNOR gates)
Must also have valid bit V = 1

Complexity of hardware to manage fully-associative cache slows down the speed
of the cache, so it is not generally used

Cache: set-associative

Hybrid between direct-mapped and fully-associative cache: set-associative

Again assume 128 slots, 32 bytes per slot
Group slots into sets of 8 each (16 sets)
Use lg 16 = 4 bits to specify set

How to find data address B31-0?
Use bits B8-5 to find the set
There are 8 slots with addresses

B8-5000

B8-5001

B8-5010

 . . .
B8-5111

Search all 8 slots to see if the tag B31-9 matches the tag of the slot
If so, get the data byte at offset B4-0 in the slot
If not, find a slot to use (possibly by eviction), and store 32 bytes in the slot
This example is 8-way set-associative cache
In general, we can have N-way set-associative cache

Compromise: have to search fewer number of slots, simpler comparison hardware
But still have the flexibility of N cache lines per slot (fewer collisions)

Cache: associativity

Direct-mapped: location determined directly by block number Fig 7.15
12 % 8 = 4

Set-associative (2-way): search 2 tags
12 % 4 = 0

Fully-associative: search all tags

Cache: associativity

Range of associativity for 8-block cache
direct-mapped

1-way
set-associative

2-way
4-way

fully-associative
8-way

Fig 7.16

Cache: other uses

Other uses of cache principle
Multiple levels

Pentium III
L1 cache: 16K
L2 cache: 512K

Disk cache: keep file data blocks in memory
Web cache: keep web pages on:

local hard drive
local server

Virtual memory
Extend memory hierarchy beyond RAM to disk
How big is 32-bit address space (number of valid addresses)?
Do most systems have that much memory?
Do programmers want to use as much memory as possible?
Solution: use RAM as a cache for data blocks on disk
Advantages

Single program can use very large address space
Multiple programs can share same physical memory
Memory access can be protected between programs

This document was created with Win2PDF available at http://www.daneprairie.com.
The unregistered version of Win2PDF is for evaluation or non-commercial use only.

http://www.daneprairie.com

