
Machine language

"In Paris they just simply opened their eyes and stared when we spoke to them in French!
We never did succeed in making those idiots understand their own language."

Innocents Abroad , Mark Twain

Assembly language

High-level language
a = b + c;

Machine language
000000 01000 01001 01010 00000 100001

Assembly language is between high-level and machine
Each statement defines one machine operation
Directly represents architecture
Assembler program translates to machine language

ISA: Instruction Set Architecture
Machine structure as seen by the programmer
Each kind of machine has its own ISA

Sun (Labs): SPARC
DEC (Class cluster): Alpha
HP: PA (Precision Architecture)
IBM Classic: S360/370/390/zSeries
PC: Intel x86
MAC: Motorola 680x0

ISA: Types

Types of architectures
CISC: complex instruction set computer

Traditional computer architecture
Unique instructions for as many operations as possible
Advantages

Each instruction can do more work
Programs use less memory
Easier to program directly or to write compilers

Disadvantages
More complex hardware circuits
More expensive to develop and build
Usually slower

RISC: reduced instruction set computer

Developed from research in late '70's/early '80's
at IBM, Stanford, and UC-Berkeley

Look at actual instruction use, focus on most frequent ones
Advantages

Easier to learn
Simpler circuits
Cheaper and more reliable to design and build
Faster

Disadvantages
Larger, more complex programs
Harder to program
Depends on compiler for optimization

Stored program

Stored program concept
Instructions and data are stored in the same memory
Instructions are simply another kind of data
Instructions are executed sequentially unless branch elsewhere or stop

Fetch-execute cycle
 - Instruction fetch

Get the next instruction from memory
 - Decode

Figure out what operation to perform on which operands
 - Operand fetch

Get the operand values
 - Execute

Perform the operation
 - Store result
Repeat until done

Instructions

Any instruction set must perform a basic set of operations
May have more complex combinations or special operations as well

Types of operations
Data transfer: load, store
Arithmetic: add, subtract, multiply, divide
Logic: and, or, xor, complement
Compare: equal, not equal, greater than, less than
Branch/jump: change execution order

MIPS

MIPS
"Microcomputer without interlocked pipeline stages"
Name is pun on acronym for "millions of instructions per second"
RISC architecture developed in middle '80's
Extended through several versions

current: MIPS IV
Used in many "embedded" applications

Game machines: Sony, Nintendo
TV set top boxes: LSI Logic shipped 7 million in 2001
Routers: Cisco
Laser printers
PDAs

High-performance workstations: Silicon Graphics (Lord of the Rings, other films)
"Over 100 million sold"

MIPS: machine model

Registers
0 8 16 24
1 9 17 25
2 10 18 26
3 11 19 27
4 12 20 28
5 13 21 29 Data
6 14 22 30
7 15 23 31

Control

ALU
Memory

CPU

Instructions

MIPS: machine model

Main memory
data: 32-bit address: range from 0x00000000 to 0xFFFFFFFF
upper half of range reserved (see fig. 3-22)

Processor
registers: store data to perform operations

faster than main memory
load-store architecture

access memory only through load, store instructions
load: register <--- data from memory
store: register ---> data to memory
amount of data in bytes (1, 2, 4, 8) depends on instruction

all other operations use only registers or immediate values
immediate: contained in instruction

CISC: may use register and memory to perform operation
32-bit registers

32 general-purpose registers
$r0-$r31
Design Principle #2: "Smaller is faster."

16 floating point registers
ALU: arithmetic-logic unit

performs operations on values in registers
control: determines how operations executed ("computer within computer")

MIPS: instructions

ALU performs arithmetic and logical operations (instructions)
Instruction specifies

 1. The operation to perform.
 2. The first operand (usually in a register).

 3. The second operand (usually in a register).
 4. The register that receives the result.
MIPS has about 111 different instructions

all 32 bits, 3 different formats

MIPS: instruction example

Example: add unsigned
addu $r10,$r8,$r9 # add 2 numbers

Syntax
3-operand instructions: all arithmetic/logical operations

operands separated by commas
Design principle #1: "Simplicity favors regularity."

operation: addu

one operation per instruction
one instruction per line

registers
source: $r8, $r9

target: $r10

comment: # add 2 numbers

starts with #, ends with end of line
Semantics

$r10 = $r8 + $r9;

alternative notation:
R[10] <-- R[8] + R[9]

Machine code
hex: 0x01095021

MIPS: instruction fields

addu $r10,$r8,$r9 # add 2 numbers

hex: 0x01095021

0 1 0 9 5 0 2 1

binary: 0000 0001 0000 1001 0101 0000 0010 0001

fields: 000000 01000 01001 01010 00000 100001

b31-26 b25-21 b20-16 b15-11 b10-6 b5-0
opcode $rs $rt $rd shamt function

bits
6 opcode: operation code
5 $rs: first source register
5 $rt: second source register
5 $rd: destination register
5 shamt: shift amount
6 function: modifies opcode

Why function field?
Notice that the form of the machine instruction is very close to assembler,

but the order of the source and target is reversed
Example of R-type (register) instruction

1 of 3 formats

This document was created with Win2PDF available at http://www.daneprairie.com.
The unregistered version of Win2PDF is for evaluation or non-commercial use only.

http://www.daneprairie.com

