
Exceptional Control Flow
Part I

Oct. 17, 2002

Exceptional Control Flow
Part I

Oct. 17, 2002
TopicsTopics

! Exceptions

! Process context switches

! Creating and destroying processes

class16.ppt

15-213
“The course that gives CMU its Zip!”

– 2 – 15-213, F’02

Control FlowControl Flow

<startup>

inst1

inst2

inst3

…
instn

<shutdown>

Computers do Only One ThingComputers do Only One Thing

! From startup to shutdown, a CPU simply reads and executes

(interprets) a sequence of instructions, one at a time.

! This sequence is the system’s physical control flow (or flow
of control).

Physical control flow

Time

– 3 – 15-213, F’02

Altering the Control FlowAltering the Control Flow

Up to Now: two mechanisms for changing control flow:Up to Now: two mechanisms for changing control flow:

! Jumps and branches

! Call and return using the stack discipline.

! Both react to changes in program state.

Insufficient for a useful systemInsufficient for a useful system

! Difficult for the CPU to react to changes in system state.

" data arrives from a disk or a network adapter.

" Instruction divides by zero

" User hits ctl-c at the keyboard

" System timer expires

System needs mechanisms for System needs mechanisms for ““exceptional controlexceptional control
flowflow””

– 4 – 15-213, F’02

Exceptional Control FlowExceptional Control Flow

! Mechanisms for exceptional control flow exists at all levels

of a computer system.

Low level MechanismLow level Mechanism

! exceptions

" change in control flow in response to a system event (i.e.,

change in system state)

! Combination of hardware and OS software

Higher Level MechanismsHigher Level Mechanisms

! Process context switch

! Signals

! Nonlocal jumps (setjmp/longjmp)

! Implemented by either:

" OS software (context switch and signals).

" C language runtime library: nonlocal jumps.

– 5 – 15-213, F’02

System context for exceptionsSystem context for exceptions

Local/IO BusLocal/IO Bus

MemoryMemory Network
adapter

Network
adapter

IDE disk
controller

IDE disk
controller

Video
adapter

Video
adapter

DisplayDisplay NetworkNetwork

ProcessorProcessor Interrupt
controller

Interrupt
controller

SCSI
controller

SCSI
controller

SCSI busSCSI bus

Serial port
controller

Serial port
controller

Parallel port
controller

Parallel port
controller

Keyboard
controller

Keyboard
controller

KeyboardKeyboard MouseMouse PrinterPrinterModemModem

disk

disk CDROM

– 6 – 15-213, F’02

Exceptions

An An exceptionexception is a transfer of control to the OS in response is a transfer of control to the OS in response
to some to some eventevent (i.e., change in processor state) (i.e., change in processor state)

User Process OS

exception

exception processing

by exception handler

exception

return (optional)

event current
next

– 7 – 15-213, F’02

Interrupt VectorsInterrupt Vectors

! Each type of event has a

unique exception number k

! Index into jump table (a.k.a.,

interrupt vector)

! Jump table entry k points to

a function (exception

handler).

! Handler k is called each

time exception k occurs.

interrupt

vector

0
1

2 ...
n-1

code for

exception handler 0

code for

exception handler 0

code for

exception handler 1

code for

exception handler 1

code for

exception handler 2

code for

exception handler 2

code for

exception handler n-1

code for

exception handler n-1

...

Exception
numbers

– 8 – 15-213, F’02

Asynchronous Exceptions (Interrupts)Asynchronous Exceptions (Interrupts)

Caused by events external to the processorCaused by events external to the processor

! Indicated by setting the processor’s interrupt pin

! handler returns to “next” instruction.

Examples:Examples:

! I/O interrupts

" hitting ctl-c at the keyboard

" arrival of a packet from a network

" arrival of a data sector from a disk

! Hard reset interrupt

" hitting the reset button

! Soft reset interrupt

" hitting ctl-alt-delete on a PC

– 9 – 15-213, F’02

Synchronous ExceptionsSynchronous Exceptions

Caused by events that occur as a result of executing anCaused by events that occur as a result of executing an
instruction:instruction:

! Traps

" Intentional

" Examples: system calls, breakpoint traps, special instructions

" Returns control to “next” instruction

! Faults

" Unintentional but possibly recoverable

" Examples: page faults (recoverable), protection faults

(unrecoverable).

" Either re-executes faulting (“current”) instruction or aborts.

! Aborts

" unintentional and unrecoverable

" Examples: parity error, machine check.

" Aborts current program

– 10 – 15-213, F’02

Trap ExampleTrap Example

User Process OS

exception

Open file

return

int
pop

Opening a FileOpening a File

! User calls open(filename, options)

" Function open executes system call instruction int

! OS must find or create file, get it ready for reading or writing

! Returns integer file descriptor

0804d070 <__libc_open>:
 . . .
 804d082: cd 80 int $0x80
 804d084: 5b pop %ebx
 . . .

– 11 – 15-213, F’02

Fault Example #1Fault Example #1

User Process OS

page fault

Create page and load

into memoryreturn

event movl

Memory ReferenceMemory Reference

! User writes to memory location

! That portion (page) of user’s memory

is currently on disk

! Page handler must load page into

physical memory

! Returns to faulting instruction

! Successful on second try

int a[1000];
main ()
{
 a[500] = 13;
}

 80483b7: c7 05 10 9d 04 08 0d movl $0xd,0x8049d10

– 12 – 15-213, F’02

Fault Example #2Fault Example #2

User Process OS

page fault

Detect invalid address

event movl

Memory ReferenceMemory Reference

! User writes to memory location

! Address is not valid

! Page handler detects invalid address

! Sends SIGSEG signal to user process

! User process exits with “segmentation fault”

int a[1000];
main ()
{
 a[5000] = 13;
}

 80483b7: c7 05 60 e3 04 08 0d movl $0xd,0x804e360

Signal process

– 13 – 15-213, F’02

ProcessesProcesses

Def: A Def: A processprocess is an instance of a running program. is an instance of a running program.

! One of the most profound ideas in computer science.

! Not the same as “program” or “processor”

Process provides each program with two keyProcess provides each program with two key
abstractions:abstractions:

! Logical control flow

" Each program seems to have exclusive use of the CPU.

! Private address space

" Each program seems to have exclusive use of main memory.

How are these Illusions maintained?How are these Illusions maintained?

! Process executions interleaved (multitasking)

! Address spaces managed by virtual memory system

– 14 – 15-213, F’02

Logical Control FlowsLogical Control Flows

Time

Process A Process B Process C

Each process has its own logical control flow

– 15 – 15-213, F’02

Concurrent ProcessesConcurrent Processes

Two processes Two processes run concurrentlyrun concurrently ((are concurrent)are concurrent) if if
their flows overlap in time.their flows overlap in time.

Otherwise, they are Otherwise, they are sequential.sequential.

Examples:Examples:

! Concurrent: A & B, A & C

! Sequential: B & C

Time

Process A Process B Process C

– 16 – 15-213, F’02

User View of Concurrent ProcessesUser View of Concurrent Processes

Control flows for concurrent processes are physicallyControl flows for concurrent processes are physically
disjoint in time.disjoint in time.

However, we can think of concurrent processes areHowever, we can think of concurrent processes are
running in parallel with each other.running in parallel with each other.

Time

Process A Process B Process C

– 17 – 15-213, F’02

Context SwitchingContext Switching

Processes are managed by a shared chunk of OS codeProcesses are managed by a shared chunk of OS code
called the called the kernelkernel

! Important: the kernel is not a separate process, but rather

runs as part of some user process

Control flow passes from one process to another via aControl flow passes from one process to another via a
context switch.context switch.

Process A
code

Process B
code

user code

kernel code

user code

kernel code

user code

Time
context switch

context switch

– 18 – 15-213, F’02

Private Address SpacesPrivate Address Spaces

Each process has its own private address space.Each process has its own private address space.

kernel virtual memory
(code, data, heap, stack)

memory mapped region for

shared libraries

run-time heap

(managed by malloc)

user stack

(created at runtime)

unused
0

%esp (stack pointer)

memory

invisible to

user code

brk

0xc0000000

0x08048000

0x40000000

read/write segment

(.data, .bss)

read-only segment

(.init, .text, .rodata)

loaded from the

executable file

0xffffffff

– 19 – 15-213, F’02

fork: Creating new processesfork: Creating new processes

intint fork(void) fork(void)

! creates a new process (child process) that is identical to the

calling process (parent process)

! returns 0 to the child process

! returns child’s pid to the parent process

if (fork() == 0) {
 printf("hello from child\n");
} else {
 printf("hello from parent\n");
}

Fork is interesting
(and often confusing)
because it is called
once but returns twice

– 20 – 15-213, F’02

Fork Example #1Fork Example #1

void fork1()
{
 int x = 1;
 pid_t pid = fork();
 if (pid == 0) {

printf("Child has x = %d\n", ++x);
 } else {

printf("Parent has x = %d\n", --x);
 }
 printf("Bye from process %d with x = %d\n", getpid(), x);
}

Key PointsKey Points

! Parent and child both run same code

" Distinguish parent from child by return value from fork

! Start with same state, but each has private copy

" Including shared output file descriptor

" Relative ordering of their print statements undefined

– 21 – 15-213, F’02

Fork Example #2Fork Example #2

void fork2()
{
 printf("L0\n");
 fork();
 printf("L1\n");
 fork();
 printf("Bye\n");
}

Key PointsKey Points

! Both parent and child can continue forking

L0 L1

L1

Bye

Bye

Bye

Bye

– 22 – 15-213, F’02

Fork Example #3Fork Example #3

void fork3()
{
 printf("L0\n");
 fork();
 printf("L1\n");
 fork();
 printf("L2\n");
 fork();
 printf("Bye\n");
}

Key PointsKey Points

! Both parent and child can continue forking

L1 L2

L2

Bye

Bye

Bye

Bye

L1 L2

L2

Bye

Bye

Bye

Bye

L0

– 23 – 15-213, F’02

Fork Example #4Fork Example #4

void fork4()
{
 printf("L0\n");
 if (fork() != 0) {

printf("L1\n");
if (fork() != 0) {
 printf("L2\n");
 fork();
}

 }
 printf("Bye\n");
}

Key PointsKey Points

! Both parent and child can continue forking

L0 L1

Bye

L2

Bye

Bye

Bye

– 24 – 15-213, F’02

Fork Example #5Fork Example #5

void fork5()
{
 printf("L0\n");
 if (fork() == 0) {

printf("L1\n");
if (fork() == 0) {
 printf("L2\n");
 fork();
}

 }
 printf("Bye\n");
}

Key PointsKey Points

! Both parent and child can continue forking

L0 Bye

L1

Bye

Bye

Bye

L2

– 25 – 15-213, F’02

exit: Destroying Processexit: Destroying Process

void exit(void exit(int int status)status)

! exits a process

" Normally return with status 0

! atexit() registers functions to be executed upon exit

void cleanup(void) {
 printf("cleaning up\n");
}

void fork6() {
 atexit(cleanup);
 fork();
 exit(0);
}

– 26 – 15-213, F’02

ZombiesZombies

IdeaIdea

! When process terminates, still consumes system resources

" Various tables maintained by OS

! Called a “zombie”

" Living corpse, half alive and half dead

ReapingReaping

! Performed by parent on terminated child

! Parent is given exit status information

! Kernel discards process

What if Parent DoesnWhat if Parent Doesn’’t Reap?t Reap?

! If any parent terminates without reaping a child, then child
will be reaped by init process

! Only need explicit reaping for long-running processes

" E.g., shells and servers

– 27 – 15-213, F’02

linux> ./forks 7 &
[1] 6639
Running Parent, PID = 6639
Terminating Child, PID = 6640
linux> ps
 PID TTY TIME CMD
 6585 ttyp9 00:00:00 tcsh
 6639 ttyp9 00:00:03 forks
 6640 ttyp9 00:00:00 forks <defunct>
 6641 ttyp9 00:00:00 ps
linux> kill 6639
[1] Terminated
linux> ps
 PID TTY TIME CMD
 6585 ttyp9 00:00:00 tcsh
 6642 ttyp9 00:00:00 ps

Zombie
Example
Zombie
Example

! ps shows child

process as “defunct”

! Killing parent allows

child to be reaped

void fork7()
{
 if (fork() == 0) {

/* Child */
printf("Terminating Child, PID = %d\n",
 getpid());
exit(0);

 } else {
printf("Running Parent, PID = %d\n",
 getpid());
while (1)
 ; /* Infinite loop */

 }
}

– 28 – 15-213, F’02

linux> ./forks 8
Terminating Parent, PID = 6675
Running Child, PID = 6676
linux> ps
 PID TTY TIME CMD
 6585 ttyp9 00:00:00 tcsh
 6676 ttyp9 00:00:06 forks
 6677 ttyp9 00:00:00 ps
linux> kill 6676
linux> ps
 PID TTY TIME CMD
 6585 ttyp9 00:00:00 tcsh
 6678 ttyp9 00:00:00 ps

Nonterminating
Child
Example

Nonterminating
Child
Example

! Child process still active

even though parent has

terminated

! Must kill explicitly, or else

will keep running

indefinitely

void fork8()
{
 if (fork() == 0) {

/* Child */
printf("Running Child, PID = %d\n",
 getpid());
while (1)
 ; /* Infinite loop */

 } else {
printf("Terminating Parent, PID = %d\n",
 getpid());
exit(0);

 }
}

– 29 – 15-213, F’02

wait: Synchronizing with childrenwait: Synchronizing with children

int int wait(wait(int int *child_status)*child_status)

! suspends current process until one of its children

terminates

! return value is the pid of the child process that terminated

! if child_status != NULL, then the object it points to will

be set to a status indicating why the child process

terminated

– 30 – 15-213, F’02

wait: Synchronizing with childrenwait: Synchronizing with children

void fork9() {
 int child_status;

 if (fork() == 0) {
 printf("HC: hello from child\n");
 }
 else {
 printf("HP: hello from parent\n");
 wait(&child_status);
 printf("CT: child has terminated\n");
 }
 printf("Bye\n");
 exit();
}

HP

HC Bye

CT Bye

– 31 – 15-213, F’02

Wait ExampleWait Example
! If multiple children completed, will take in arbitrary order

! Can use macros WIFEXITED and WEXITSTATUS to get

information about exit status

void fork10()
{
 pid_t pid[N];
 int i;
 int child_status;
 for (i = 0; i < N; i++)

if ((pid[i] = fork()) == 0)
 exit(100+i); /* Child */

 for (i = 0; i < N; i++) {
pid_t wpid = wait(&child_status);
if (WIFEXITED(child_status))
 printf("Child %d terminated with exit status %d\n",

 wpid, WEXITSTATUS(child_status));
else
 printf("Child %d terminate abnormally\n", wpid);

 }
} – 32 – 15-213, F’02

WaitpidWaitpid
! waitpid(pid, &status, options)

" Can wait for specific process

" Various options

void fork11()
{
 pid_t pid[N];
 int i;
 int child_status;
 for (i = 0; i < N; i++)

if ((pid[i] = fork()) == 0)
 exit(100+i); /* Child */

 for (i = 0; i < N; i++) {
pid_t wpid = waitpid(pid[i], &child_status, 0);
if (WIFEXITED(child_status))
 printf("Child %d terminated with exit status %d\n",

 wpid, WEXITSTATUS(child_status));
else
 printf("Child %d terminated abnormally\n", wpid);

 }

– 33 – 15-213, F’02

Wait/Waitpid Example OutputsWait/Waitpid Example Outputs

Child 3565 terminated with exit status 103
Child 3564 terminated with exit status 102
Child 3563 terminated with exit status 101
Child 3562 terminated with exit status 100
Child 3566 terminated with exit status 104

Child 3568 terminated with exit status 100
Child 3569 terminated with exit status 101
Child 3570 terminated with exit status 102
Child 3571 terminated with exit status 103
Child 3572 terminated with exit status 104

Using wait (fork10)

Using waitpid (fork11)

– 34 – 15-213, F’02

exec: Running new programsexec: Running new programs
int execlint execl(char *path, char *arg0, char *arg1, (char *path, char *arg0, char *arg1, ……, 0), 0)

! loads and runs executable at path with args arg0, arg1, …

" path is the complete path of an executable

" arg0 becomes the name of the process

» typically arg0 is either identical to path, or else it contains
only the executable filename from path

" “real” arguments to the executable start with arg1, etc.

" list of args is terminated by a (char *)0 argument

! returns -1 if error, otherwise doesn’t return!

main() {
 if (fork() == 0) {
 execl("/usr/bin/cp", "cp", "foo", "bar", 0);
 }
 wait(NULL);
 printf("copy completed\n");
 exit();
}

– 35 – 15-213, F’02

SummarizingSummarizing

ExceptionsExceptions

! Events that require nonstandard control flow

! Generated externally (interrupts) or internally (traps and faults)

ProcessesProcesses

! At any given time, system has multiple active processes

! Only one can execute at a time, though

! Each process appears to have total control of processor +

private memory space

– 36 – 15-213, F’02

Summarizing (cont.)Summarizing (cont.)

Spawning ProcessesSpawning Processes

! Call to fork

" One call, two returns

Terminating ProcessesTerminating Processes

! Call exit

" One call, no return

Reaping ProcessesReaping Processes

! Call wait or waitpid

Replacing Program Executed by ProcessReplacing Program Executed by Process

! Call execl (or variant)

" One call, (normally) no return

