
Exceptional Control Flow
Part II

Oct. 22, 2002

Exceptional Control Flow
Part II

Oct. 22, 2002
TopicsTopics

 Process Hierarchy
 Shells
 Signals
 Nonlocal jumps

class17.ppt

15-213
“The course that gives CMU its Zip!”

– 2 – 15-213, F’02

ECF Exists at All Levels of a SystemECF Exists at All Levels of a System
ExceptionsExceptions

 Hardware and operating system kernel
software

Concurrent processesConcurrent processes
 Hardware timer and kernel software

SignalsSignals
 Kernel software

Non-local jumpsNon-local jumps
 Application code

Previous Lecture

This Lecture

– 3 – 15-213, F’02

The World of MultitaskingThe World of Multitasking
System Runs Many Processes ConcurrentlySystem Runs Many Processes Concurrently

 Process: executing program
 State consists of memory image + register values + program

counter
 Continually switches from one process to another

 Suspend process when it needs I/O resource or timer event
occurs

 Resume process when I/O available or given scheduling priority
 Appears to user(s) as if all processes executing

simultaneously
 Even though most systems can only execute one process at a

time
 Except possibly with lower performance than if running alone

– 4 – 15-213, F’02

Programmer’s Model of MultitaskingProgrammer’s Model of Multitasking
Basic FunctionsBasic Functions

 fork() spawns new process
 Called once, returns twice

 exit() terminates own process
 Called once, never returns
 Puts it into “zombie” status

 wait() and waitpid() wait for and reap terminated
children

 execl() and execve() run a new program in an existing
process
 Called once, (normally) never returns

Programming ChallengeProgramming Challenge
 Understanding the nonstandard semantics of the functions
 Avoiding improper use of system resources

 E.g. “Fork bombs” can disable a system.

– 5 – 15-213, F’02

Unix Process HierarchyUnix Process Hierarchy

Login shell

ChildChildChild

GrandchildGrandchild

[0]

Daemon
e.g. httpd

init [1]

– 6 – 15-213, F’02

Unix Startup: Step 1Unix Startup: Step 1

init [1]

[0] Process 0: handcrafted kernel process

Child process 1 execs /sbin/init

1. Pushing reset button loads the PC with the address of a small
 bootstrap program.
2. Bootstrap program loads the boot block (disk block 0).
3. Boot block program loads kernel binary (e.g., /boot/vmlinux)
4. Boot block program passes control to kernel.
5. Kernel handcrafts the data structures for process 0.

Process 0 forks child process 1

– 7 – 15-213, F’02

Unix Startup: Step 2Unix Startup: Step 2

init [1]

[0]

gettyDaemons
e.g. ftpd, httpd

/etc/inittab
init forks and execs
daemons per
/etc/inittab, and forks
and execs a getty program
for the console

– 8 – 15-213, F’02

Unix Startup: Step 3Unix Startup: Step 3

init [1]

[0]

The getty process
execs a login
program

login

– 9 – 15-213, F’02

Unix Startup: Step 4Unix Startup: Step 4

init [1]

[0]

login reads login and passwd.
if OK, it execs a shell.
if not OK, it execs another getty

tcsh

– 10 – 15-213, F’02

Shell ProgramsShell Programs
A A shellshell is an application program that runs programs on is an application program that runs programs on

behalf of the user.behalf of the user.
 sh – Original Unix Bourne Shell
 csh – BSD Unix C Shell, tcsh – Enhanced C Shell
 bash –Bourne-Again Shell

int main()
{
 char cmdline[MAXLINE];

 while (1) {
/* read */
printf("> ");
Fgets(cmdline, MAXLINE, stdin);
if (feof(stdin))
 exit(0);

/* evaluate */
eval(cmdline);

 }
}

Execution is a sequence ofExecution is a sequence of
read/evaluate stepsread/evaluate steps

– 11 – 15-213, F’02

Simple Shell eval FunctionSimple Shell eval Function
void eval(char *cmdline)
{
 char *argv[MAXARGS]; /* argv for execve() */
 int bg; /* should the job run in bg or fg? */
 pid_t pid; /* process id */

 bg = parseline(cmdline, argv);
 if (!builtin_command(argv)) {

if ((pid = Fork()) == 0) { /* child runs user job */
 if (execve(argv[0], argv, environ) < 0) {

printf("%s: Command not found.\n", argv[0]);
exit(0);

 }
}

if (!bg) { /* parent waits for fg job to terminate */
 int status;

 if (waitpid(pid, &status, 0) < 0)
unix_error("waitfg: waitpid error");

}
else /* otherwise, don’t wait for bg job */
 printf("%d %s", pid, cmdline);

 }
}

– 12 – 15-213, F’02

Problem with Simple Shell ExampleProblem with Simple Shell Example
Shell correctly waits for and reaps foreground jobs.Shell correctly waits for and reaps foreground jobs.
But what about background jobs?But what about background jobs?

 Will become zombies when they terminate.
 Will never be reaped because shell (typically) will not

terminate.
 Creates a memory leak that will eventually crash the kernel

when it runs out of memory.

Solution: Reaping background jobs requires aSolution: Reaping background jobs requires a
mechanism called a mechanism called a signalsignal..

– 13 – 15-213, F’02

SignalsSignals
A A signalsignal is a small message that notifies a process that is a small message that notifies a process that

an event of some type has occurred in the system.an event of some type has occurred in the system.
 Kernel abstraction for exceptions and interrupts.
 Sent from the kernel (sometimes at the request of another

process) to a process.
 Different signals are identified by small integer ID’s
 The only information in a signal is its ID and the fact that it

arrived.

Timer signalTimer signalTerminateTerminateSIGALRMSIGALRM1414
Segmentation violationSegmentation violationTerminate & DumpTerminate & DumpSIGSEGVSIGSEGV1111

1717

99
22

IDID

Child stopped or terminatedChild stopped or terminatedIgnoreIgnoreSIGCHLDSIGCHLD

Kill program (cannot override or ignore)Kill program (cannot override or ignore)TerminateTerminateSIGKILLSIGKILL
Interrupt from keyboard (Interrupt from keyboard (ctlctl-c-c))TerminateTerminateSIGINTSIGINT
Corresponding EventCorresponding EventDefault ActionDefault ActionNameName

– 14 – 15-213, F’02

Signal Concepts Signal Concepts
Sending a signalSending a signal

 Kernel sends (delivers) a signal to a destination process by
updating some state in the context of the destination
process.

 Kernel sends a signal for one of the following reasons:
 Kernel has detected a system event such as divide-by-zero

(SIGFPE) or the termination of a child process (SIGCHLD)
 Another process has invoked the kill system call to explicitly

request the kernel to send a signal to the destination process.

– 15 – 15-213, F’02

Signal Concepts (cont)Signal Concepts (cont)
Receiving a signalReceiving a signal

 A destination process receives a signal when it is forced by
the kernel to react in some way to the delivery of the signal.

 Three possible ways to react:
 Ignore the signal (do nothing)
 Terminate the process.
 Catch the signal by executing a user-level function called a

signal handler.
» Akin to a hardware exception handler being called in

response to an asynchronous interrupt.

– 16 – 15-213, F’02

Signal Concepts (cont)Signal Concepts (cont)
A signal is A signal is pendingpending if it has been sent but not yet if it has been sent but not yet

received.received.
 There can be at most one pending signal of any particular

type.
 Important: Signals are not queued

 If a process has a pending signal of type k, then subsequent
signals of type k that are sent to that process are discarded.

A process can A process can blockblock the receipt of certain signals. the receipt of certain signals.
 Blocked signals can be delivered, but will not be received until

the signal is unblocked.

A pending signal is received at most once.A pending signal is received at most once.

– 17 – 15-213, F’02

Signal ConceptsSignal Concepts
Kernel maintains Kernel maintains pendingpending and and blockedblocked bit vectors in bit vectors in

the context of each process.the context of each process.
 pending – represents the set of pending signals

 Kernel sets bit k in pending whenever a signal of type k is
delivered.

 Kernel clears bit k in pending whenever a signal of type k is
received

 blocked – represents the set of blocked signals
 Can be set and cleared by the application using the
sigprocmask function.

– 18 – 15-213, F’02

Process GroupsProcess Groups
Every process belongs to exactlyEvery process belongs to exactly

one process groupone process group

Fore-
ground

job

Back-
ground
job #1

Back-
ground
job #2

Shell

Child Child

pid=10
pgid=10

Foreground
process group 20

Background
process group 32

Background
process group 40

pid=20
pgid=20

pid=32
pgid=32

pid=40
pgid=40

pid=21
pgid=20

pid=22
pgid=20

getpgrpgetpgrp() () –– Return process Return process
group of current processgroup of current process

setpgidsetpgid() () –– Change processChange process
group of a processgroup of a process

– 19 – 15-213, F’02

Sending Signals with kill ProgramSending Signals with kill Program
kill kill program sendsprogram sends

arbitrary signal to aarbitrary signal to a
process or processprocess or process
groupgroup

ExamplesExamples
 kill –9 24818

 Send SIGKILL to
process 24818

 kill –9 –24817
 Send SIGKILL to
every process in
process group
24817.

linux> ./forks 16
linux> Child1: pid=24818 pgrp=24817
Child2: pid=24819 pgrp=24817

linux> ps
 PID TTY TIME CMD
24788 pts/2 00:00:00 tcsh
24818 pts/2 00:00:02 forks
24819 pts/2 00:00:02 forks
24820 pts/2 00:00:00 ps
linux> kill -9 -24817
linux> ps
 PID TTY TIME CMD
24788 pts/2 00:00:00 tcsh
24823 pts/2 00:00:00 ps
linux>

– 20 – 15-213, F’02

Sending Signals from the KeyboardSending Signals from the Keyboard
Typing ctrl-c (ctrl-z) sends a SIGTERM (SIGTSTP) to every job inTyping ctrl-c (ctrl-z) sends a SIGTERM (SIGTSTP) to every job in

the foreground process group.the foreground process group.
 SIGTERM – default action is to terminate each process
 SIGTSTP – default action is to stop (suspend) each process

Fore-
ground

job

Back-
ground
job #1

Back-
ground
job #2

Shell

Child Child

pid=10
pgid=10

Foreground
process group 20

Background
process
group 32

Background
process
group 40

pid=20
pgid=20

pid=32
pgid=32

pid=40
pgid=40

pid=21
pgid=20

pid=22
pgid=20

– 21 – 15-213, F’02

Example of ctrl-c and ctrl-zExample of ctrl-c and ctrl-z

linux> ./forks 17
Child: pid=24868 pgrp=24867
Parent: pid=24867 pgrp=24867
 <typed ctrl-z>
Suspended
linux> ps a
 PID TTY STAT TIME COMMAND
24788 pts/2 S 0:00 -usr/local/bin/tcsh -i
24867 pts/2 T 0:01 ./forks 17
24868 pts/2 T 0:01 ./forks 17
24869 pts/2 R 0:00 ps a
bass> fg
./forks 17
<typed ctrl-c>
linux> ps a
 PID TTY STAT TIME COMMAND
24788 pts/2 S 0:00 -usr/local/bin/tcsh -i
24870 pts/2 R 0:00 ps a

– 22 – 15-213, F’02

Sending Signals with kill FunctionSending Signals with kill Function
void fork12()
{
 pid_t pid[N];
 int i, child_status;
 for (i = 0; i < N; i++)

if ((pid[i] = fork()) == 0)
 while(1); /* Child infinite loop */

 /* Parent terminates the child processes */
 for (i = 0; i < N; i++) {

printf("Killing process %d\n", pid[i]);
kill(pid[i], SIGINT);

 }

 /* Parent reaps terminated children */
 for (i = 0; i < N; i++) {

pid_t wpid = wait(&child_status);
if (WIFEXITED(child_status))
 printf("Child %d terminated with exit status %d\n",

 wpid, WEXITSTATUS(child_status));
else
 printf("Child %d terminated abnormally\n", wpid);

 }
}

– 23 – 15-213, F’02

Receiving SignalsReceiving Signals
Suppose kernel is returning from exception handlerSuppose kernel is returning from exception handler

and is ready to pass control to process and is ready to pass control to process pp..
Kernel computesKernel computes pnbpnb = pending & ~blocked = pending & ~blocked

 The set of pending nonblocked signals for process p

If (If (pnbpnb == 0 == 0))
 Pass control to next instruction in the logical flow for p.

ElseElse
 Choose least nonzero bit k in pnb and force process p to

receive signal k.
 The receipt of the signal triggers some action by p
 Repeat for all nonzero k in pnb.
 Pass control to next instruction in logical flow for p.

– 24 – 15-213, F’02

Default ActionsDefault Actions
Each signal type has a predefined Each signal type has a predefined default actiondefault action, which, which

is one of:is one of:
 The process terminates
 The process terminates and dumps core.
 The process stops until restarted by a SIGCONT signal.
 The process ignores the signal.

– 25 – 15-213, F’02

Installing Signal HandlersInstalling Signal Handlers
The The signalsignal function modifies the default action function modifies the default action

associated with the receipt of signal associated with the receipt of signal signumsignum::
 handler_t *signal(int signum, handler_t *handler)

Different values for Different values for handlerhandler::
 SIG_IGN: ignore signals of type signum
 SIG_DFL: revert to the default action on receipt of signals of

type signum.
 Otherwise, handler is the address of a signal handler

 Called when process receives signal of type signum
 Referred to as “installing” the handler.
 Executing handler is called “catching” or “handling” the signal.
 When the handler executes its return statement, control passes

back to instruction in the control flow of the process that was
interrupted by receipt of the signal.

– 26 – 15-213, F’02

Signal Handling ExampleSignal Handling Example
void int_handler(int sig)
{
 printf("Process %d received signal %d\n",
 getpid(), sig);
 exit(0);
}

void fork13()
{
 pid_t pid[N];
 int i, child_status;
 signal(SIGINT, int_handler);

 . . .
}

linux> ./forks 13
Killing process 24973
Killing process 24974
Killing process 24975
Killing process 24976
Killing process 24977
Process 24977 received signal 2
Child 24977 terminated with exit status 0
Process 24976 received signal 2
Child 24976 terminated with exit status 0
Process 24975 received signal 2
Child 24975 terminated with exit status 0
Process 24974 received signal 2
Child 24974 terminated with exit status 0
Process 24973 received signal 2
Child 24973 terminated with exit status 0
linux>

– 27 – 15-213, F’02

Signal Handler FunkinessSignal Handler Funkiness
Pending signals are notPending signals are not

queuedqueued
 For each signal type,

just have single bit
indicating whether or
not signal is pending

 Even if multiple
processes have sent
this signal

int ccount = 0;
void child_handler(int sig)
{
 int child_status;
 pid_t pid = wait(&child_status);
 ccount--;
 printf("Received signal %d from process %d\n",
 sig, pid);
}

void fork14()
{
 pid_t pid[N];
 int i, child_status;
 ccount = N;
 signal(SIGCHLD, child_handler);
 for (i = 0; i < N; i++)

if ((pid[i] = fork()) == 0) {
 /* Child: Exit */
 exit(0);
}

 while (ccount > 0)
pause();/* Suspend until signal occurs */

}

– 28 – 15-213, F’02

Living With Nonqueuing SignalsLiving With Nonqueuing Signals
Must check for all terminated jobsMust check for all terminated jobs

 Typically loop with wait

void child_handler2(int sig)
{
 int child_status;
 pid_t pid;
 while ((pid = wait(&child_status)) > 0) {

ccount--;
printf("Received signal %d from process %d\n", sig,

pid);
 }
}

void fork15()
{
 . . .
 signal(SIGCHLD, child_handler2);
 . . .
}

– 29 – 15-213, F’02

A Program That Reacts to
Externally Generated Events (ctrl-c)
A Program That Reacts to
Externally Generated Events (ctrl-c)

#include <stdlib.h>
#include <stdio.h>
#include <signal.h>

void handler(int sig) {
 printf("You think hitting ctrl-c will stop the bomb?\n");
 sleep(2);
 printf("Well...");
 fflush(stdout);
 sleep(1);
 printf("OK\n");
 exit(0);
}

main() {
 signal(SIGINT, handler); /* installs ctl-c handler */
 while(1) {
 }
}

– 30 – 15-213, F’02

A Program That Reacts to Internally
Generated Events
A Program That Reacts to Internally
Generated Events
#include <stdio.h>
#include <signal.h>

int beeps = 0;

/* SIGALRM handler */
void handler(int sig) {
 printf("BEEP\n");
 fflush(stdout);

 if (++beeps < 5)
 alarm(1);
 else {
 printf("BOOM!\n");
 exit(0);
 }
}

main() {
 signal(SIGALRM, handler);
 alarm(1); /* send SIGALRM in
 1 second */

 while (1) {
 /* handler returns here */
 }
}

linux> a.out
BEEP
BEEP
BEEP
BEEP
BEEP
BOOM!
bass>

– 31 – 15-213, F’02

Nonlocal Jumps: setjmp/longjmpNonlocal Jumps: setjmp/longjmp
Powerful (but dangerous) user-level mechanism for transferringPowerful (but dangerous) user-level mechanism for transferring

control to an arbitrary location.control to an arbitrary location.
 Controlled to way to break the procedure call/return discipline
 Useful for error recovery and signal handling

int setjmpint setjmp((jmpjmp__bufbuf j) j)
 Must be called before longjmp
 Identifies a return site for a subsequent longjmp.
 Called once, returns one or more times

Implementation:Implementation:
 Remember where you are by storing the current register context,

stack pointer, and PC value in jmp_buf.
 Return 0

– 32 – 15-213, F’02

setjmp/longjmp (cont)setjmp/longjmp (cont)

void void longjmplongjmp((jmpjmp__bufbuf j, j, intint i) i)
 Meaning:

 return from the setjmp remembered by jump buffer j again...
 …this time returning i instead of 0

 Called after setjmp
 Called once, but never returns

longjmplongjmp Implementation:Implementation:
 Restore register context from jump buffer j
 Set %eax (the return value) to i
 Jump to the location indicated by the PC stored in jump buf j.

– 33 – 15-213, F’02

setjmp/longjmp Examplesetjmp/longjmp Example

#include <setjmp.h>
jmp_buf buf;

main() {
 if (setjmp(buf) != 0) {
 printf("back in main due to an error\n");
 else
 printf("first time through\n");
 p1(); /* p1 calls p2, which calls p3 */
}
...
p3() {
 <error checking code>
 if (error)
 longjmp(buf, 1)
}

– 34 – 15-213, F’02

Putting It All Together: A Program
That Restarts Itself When ctrl-c’d
Putting It All Together: A Program
That Restarts Itself When ctrl-c’d
#include <stdio.h>
#include <signal.h>
#include <setjmp.h>

sigjmp_buf buf;

void handler(int sig) {
 siglongjmp(buf, 1);
}

main() {
 signal(SIGINT, handler);

 if (!sigsetjmp(buf, 1))
 printf("starting\n");
 else
 printf("restarting\n");

while(1) {
 sleep(1);
 printf("processing...\n");
 }
}

bass> a.out
starting
processing...
processing...
restarting
processing...
processing...
processing...
restarting
processing...
restarting
processing...
processing...

Ctrl-c

Ctrl-c

Ctrl-c

– 35 – 15-213, F’02

Limitations of Nonlocal JumpsLimitations of Nonlocal Jumps
Works within stack disciplineWorks within stack discipline

 Can only long jump to environment of function that has been
called but not yet completed
jmp_buf env;

P1()
{
 if (setjmp(env)) {
 /* Long Jump to here */
 } else {
 P2();
 }
}

P2()
{ . . . P2(); . . . P3(); }

P3()
{
 longjmp(env, 1);
}

P1

P2

P2

P2

P3

env
P1

Before longjmp

After longjmp

– 36 – 15-213, F’02

Limitations of Long Jumps (cont.)Limitations of Long Jumps (cont.)
Works within stack disciplineWorks within stack discipline

 Can only long jump to environment of function that has been
called but not yet completed

jmp_buf env;

P1()
{
 P2(); P3();
}

P2()
{
 if (setjmp(env)) {
 /* Long Jump to here */
 }
}

P3()
{
 longjmp(env, 1);
}

env

P1

P2

At setjmp

P1

P3
env

At longjmp

X

P1

P2

P2 returns

env
X

– 37 – 15-213, F’02

SummarySummary
Signals provide process-level exception handlingSignals provide process-level exception handling

 Can generate from user programs
 Can define effect by declaring signal handler

Some caveatsSome caveats
 Very high overhead

 >10,000 clock cycles
 Only use for exceptional conditions

 Don’t have queues
 Just one bit for each pending signal type

Nonlocal Nonlocal jumps provide exceptional control flow withinjumps provide exceptional control flow within
processprocess
 Within constraints of stack discipline

