
Randal E. Bryant

Carnegie Mellon University

CS:APP

CS:APP Chapter 4
Computer Architecture

Instruction Set
Architecture

CS:APP Chapter 4CS:APP Chapter 4
Computer ArchitectureComputer Architecture

Instruction SetInstruction Set
ArchitectureArchitecture

http://csapp.cs.cmu.edu

– 2 – CS:APP

Instruction Set ArchitectureInstruction Set Architecture

Assembly Language ViewAssembly Language View

! Processor state

" Registers, memory, …

! Instructions

" addl, movl, leal, …

" How instructions are encoded

as bytes

Layer of AbstractionLayer of Abstraction

! Above: how to program machine

" Processor executes instructions

in a sequence

! Below: what needs to be built

" Use variety of tricks to make it

run fast

" E.g., execute multiple

instructions simultaneously

ISA

Compiler OS

CPU
Design

Circuit
Design

Chip
Layout

Application
Program

– 3 – CS:APP

%eax

%ecx

%edx

%ebx

%esi

%edi

%esp

%ebp

Y86 Processor StateY86 Processor State

! Program Registers

" Same 8 as with IA32. Each 32 bits

! Condition Codes

" Single-bit flags set by arithmetic or logical instructions

» OF: Overflow ZF: Zero SF:Negative

! Program Counter

" Indicates address of instruction

! Memory

" Byte-addressable storage array

" Words stored in little-endian byte order

Program
registers Condition

codes

PC

Memory

OF ZF SF

– 4 – CS:APP

Y86 InstructionsY86 Instructions

FormatFormat

! 1--6 bytes of information read from memory

" Can determine instruction length from first byte

" Not as many instruction types, and simpler encoding than with

IA32

! Each accesses and modifies some part(s) of the program

state

– 5 – CS:APP

Encoding RegistersEncoding Registers

Each register has 4-bit IDEach register has 4-bit ID

! Same encoding as in IA32

Register ID 8 indicates Register ID 8 indicates ““no registerno register””

! Will use this in our hardware design in multiple places

%eax

%ecx

%edx

%ebx

%esi

%edi

%esp

%ebp

0
1
2
3

6
7
4
5

– 6 – CS:APP

Instruction ExampleInstruction Example

Addition InstructionAddition Instruction

! Add value in register rA to that in register rB

" Store result in register rB

" Note that Y86 only allows addition to be applied to register data

! Set condition codes based on result

! e.g., addl %eax,%esi Encoding: 60 06

! Two-byte encoding

" First indicates instruction type

" Second gives source and destination registers

addl rA, rB 6 0 rA rB

Encoded Representation

Generic Form

– 7 – CS:APP

Arithmetic and Logical OperationsArithmetic and Logical Operations

! Refer to generically as
“OPl”

! Encodings differ only by

“function code”

" Low-order 4 bytes in first

instruction word

! Set condition codes as

side effect

addl rA, rB 6 0 rA rB

subl rA, rB 6 1 rA rB

andl rA, rB 6 2 rA rB

xorl rA, rB 6 3 rA rB

Add

Subtract (rA from rB)

And

Exclusive-Or

Instruction Code Function Code

– 8 – CS:APP

Move OperationsMove Operations

! Like the IA32 movl instruction

! Simpler format for memory addresses

! Give different names to keep them distinct

rrmovl rA, rB 2 0 rA rB Register --> Register

Immediate --> Register
irmovl V, rB 3 0 8 rB V

Register --> Memory
rmmovl rA, D(rB) 4 0 rA rB D

Memory --> Register
mrmovl D(rB), rA 5 0 rA rB D

– 9 – CS:APP

Move Instruction ExamplesMove Instruction Examples

irmovl $0xabcd, %edx movl $0xabcd, %edx 30 82 cd ab 00 00

IA32 Y86 Encoding

rrmovl %esp, %ebx movl %esp, %ebx 20 43

mrmovl -12(%ebp),%ecxmovl -12(%ebp),%ecx 50 15 f4 ff ff ff

rmmovl %esi,0x41c(%esp)movl %esi,0x41c(%esp)

—movl $0xabcd, (%eax)

—movl %eax, 12(%eax,%edx)

—movl (%ebp,%eax,4),%ecx

40 64 1c 04 00 00

– 10 – CS:APP

Jump InstructionsJump Instructions

! Refer to generically as
“jXX”

! Encodings differ only by

“function code”

! Based on values of

condition codes

! Same as IA32 counterparts

! Encode full destination

address

" Unlike PC-relative

addressing seen in IA32

jmp Dest 7 0

Jump Unconditionally

Dest

jle Dest 7 1

Jump When Less or Equal

Dest

jl Dest 7 2

Jump When Less

Dest

je Dest 7 3

Jump When Equal

Dest

jne Dest 7 4

Jump When Not Equal

Dest

jge Dest 7 5

Jump When Greater or Equal

Dest

jg Dest 7 6

Jump When Greater

Dest

– 11 – CS:APP

Y86 Program StackY86 Program Stack

! Region of memory holding

program data

! Used in Y86 (and IA32) for

supporting procedure calls

! Stack top indicated by %esp

" Address of top stack element

! Stack grows toward lower

addresses

" Top element is at highest

address in the stack

" When pushing, must first

decrement stack pointer

" When popping, increment stack

pointer
%esp

•

•

•

Increasing
Addresses

Stack “Top”

Stack
“Bottom”

– 12 – CS:APP

Stack OperationsStack Operations

! Decrement %esp by 4

! Store word from rA to memory at %esp

! Like IA32

! Read word from memory at %esp

! Save in rA

! Increment %esp by 4

! Like IA32

pushl rA a 0 rA 8

popl rA b 0 rA 8

– 13 – CS:APP

Subroutine Call and ReturnSubroutine Call and Return

! Push address of next instruction onto stack

! Start executing instructions at Dest

! Like IA32

! Pop value from stack

! Use as address for next instruction

! Like IA32

call Dest 8 0 Dest

ret 9 0

– 14 – CS:APP

Miscellaneous InstructionsMiscellaneous Instructions

! Don’t do anything

! Stop executing instructions

! IA32 has comparable instruction, but can’t execute it in

user mode

! We will use it to stop the simulator

nop 0 0

halt 1 0

– 15 – CS:APP

Writing Y86 CodeWriting Y86 Code

Try to Use C Compiler as Much as PossibleTry to Use C Compiler as Much as Possible

! Write code in C

! Compile for IA32 with gcc -S

! Transliterate into Y86

Coding ExampleCoding Example

! Find number of elements in null-terminated list

int len1(int a[]);

5043

6125

7395

0

a

! 3

– 16 – CS:APP

Y86 Code Generation ExampleY86 Code Generation Example

First TryFirst Try

! Write typical array code

! Compile with gcc -O2 -S

ProblemProblem

! Hard to do array indexing on
Y86

" Since don’t have scaled

addressing modes/* Find number of elements in

 null-terminated list */

int len1(int a[])

{

 int len;

 for (len = 0; a[len]; len++)

;

 return len;

}

L18:

incl %eax

cmpl $0,(%edx,%eax,4)

jne L18

– 17 – CS:APP

Y86 Code Generation Example #2Y86 Code Generation Example #2

Second TrySecond Try

! Write with pointer code

! Compile with gcc -O2 -S

ResultResult

! Don’t need to do indexed
addressing

/* Find number of elements in

 null-terminated list */

int len2(int a[])

{

 int len = 0;

 while (*a++)

len++;

 return len;

}

L24:

movl (%edx),%eax

incl %ecx

L26:

addl $4,%edx

testl %eax,%eax

jne L24

– 18 – CS:APP

Y86 Code Generation Example #3Y86 Code Generation Example #3

IA32 CodeIA32 Code

! Setup

Y86 CodeY86 Code

! Setup

len2:

pushl %ebp

xorl %ecx,%ecx

movl %esp,%ebp

movl 8(%ebp),%edx

movl (%edx),%eax

jmp L26

len2:

pushl %ebp # Save %ebp

xorl %ecx,%ecx # len = 0

rrmovl %esp,%ebp # Set frame

mrmovl 8(%ebp),%edx# Get a

mrmovl (%edx),%eax # Get *a

jmp L26 # Goto entry

– 19 – CS:APP

Y86 Code Generation Example #4Y86 Code Generation Example #4

IA32 CodeIA32 Code

! Loop + Finish

Y86 CodeY86 Code

! Loop + Finish

L24:

movl (%edx),%eax

incl %ecx

L26:

addl $4,%edx

testl %eax,%eax

jne L24

movl %ebp,%esp

movl %ecx,%eax

popl %ebp

ret

L24:

mrmovl (%edx),%eax # Get *a

irmovl $1,%esi

addl %esi,%ecx # len++

L26: # Entry:

irmovl $4,%esi

addl %esi,%edx # a++

andl %eax,%eax # *a == 0?

jne L24 # No--Loop

rrmovl %ebp,%esp # Pop

rrmovl %ecx,%eax # Rtn len

popl %ebp

ret

– 20 – CS:APP

Y86 Program StructureY86 Program Structure

! Program starts at

address 0

! Must set up stack

" Make sure don’t

overwrite code!

! Must initialize data

! Can use symbolic

names

irmovl Stack,%esp # Set up stack

rrmovl %esp,%ebp # Set up frame

irmovl List,%edx

pushl %edx # Push argument

call len2 # Call Function

halt # Halt

.align 4

List: # List of elements

.long 5043

.long 6125

.long 7395

.long 0

Function

len2:

. . .

Allocate space for stack

.pos 0x100

Stack:

– 21 – CS:APP

Assembling Y86 ProgramAssembling Y86 Program

! Generates “object code” file eg.yo

" Actually looks like disassembler output

unix> yas eg.ys

 0x000: 308400010000 | irmovl Stack,%esp # Set up stack

 0x006: 2045 | rrmovl %esp,%ebp # Set up frame

 0x008: 308218000000 | irmovl List,%edx

 0x00e: a028 | pushl %edx # Push argument

 0x010: 8028000000 | call len2 # Call Function

 0x015: 10 | halt # Halt

 0x018: | .align 4

 0x018: | List: # List of elements

 0x018: b3130000 | .long 5043

 0x01c: ed170000 | .long 6125

 0x020: e31c0000 | .long 7395

 0x024: 00000000 | .long 0

– 22 – CS:APP

Simulating Y86 ProgramSimulating Y86 Program

! Instruction set simulator

" Computes effect of each instruction on processor state

" Prints changes in state from original

unix> yis eg.yo

Stopped in 41 steps at PC = 0x16. Exception 'HLT', CC Z=1 S=0 O=0

Changes to registers:

%eax: 0x00000000 0x00000003

%ecx: 0x00000000 0x00000003

%edx: 0x00000000 0x00000028

%esp: 0x00000000 0x000000fc

%ebp: 0x00000000 0x00000100

%esi: 0x00000000 0x00000004

Changes to memory:

0x00f4: 0x00000000 0x00000100

0x00f8: 0x00000000 0x00000015

0x00fc: 0x00000000 0x00000018

– 23 – CS:APP

CISC Instruction SetsCISC Instruction Sets
! Complex Instruction Set Computer

! Dominant style through mid-80’s

Stack-oriented instruction setStack-oriented instruction set

! Use stack to pass arguments, save program counter

! Explicit push and pop instructions

Arithmetic instructions can access memoryArithmetic instructions can access memory

! addl %eax, 12(%ebx,%ecx,4)

" requires memory read and write

" Complex address calculation

Condition codesCondition codes

! Set as side effect of arithmetic and logical instructions

PhilosophyPhilosophy

! Add instructions to perform “typical” programming tasks
– 24 – CS:APP

RISC Instruction SetsRISC Instruction Sets
! Reduced Instruction Set Computer

! Internal project at IBM, later popularized by Hennessy

(Stanford) and Patterson (Berkeley)

Fewer, simpler instructionsFewer, simpler instructions

! Might take more to get given task done

! Can execute them with small and fast hardware

Register-oriented instruction setRegister-oriented instruction set

! Many more (typically 32) registers

! Use for arguments, return pointer, temporaries

Only load and store instructions can access memoryOnly load and store instructions can access memory

! Similar to Y86 mrmovl and rmmovl

No Condition codesNo Condition codes

! Test instructions return 0/1 in register

– 25 – CS:APP

MIPS RegistersMIPS Registers

$0

$1

$2

$3

$4

$5

$6

$7

$8

$9

$10

$11

$12

$13

$14

$15

$0

$at

$v0

$v1

$a0

$a1

$a2

$a3

$t0

$t1

$t2

$t3

$t4

$t5

$t6

$t7

Constant 0

Reserved Temp.

Return Values

Procedure arguments

Caller Save
Temporaries:
May be overwritten by
called procedures

$16

$17

$18

$19

$20

$21

$22

$23

$24

$25

$26

$27

$28

$29

$30

$31

$s0

$s1

$s2

$s3

$s4

$s5

$s6

$s7

$t8

$t9

$k0

$k1

$gp

$sp

$s8

$ra

Reserved for
Operating Sys

Caller Save Temp

Global Pointer

Callee Save
Temporaries:
May not be
overwritten by
called procedures

Stack Pointer

Callee Save Temp

Return Address

– 26 – CS:APP

MIPS Instruction ExamplesMIPS Instruction Examples

Op Ra Rb Offset

Op Ra Rb Rd Fn00000

R-R

Op Ra Rb Immediate

R-I

Load/Store

addu $3,$2,$1 # Register add: $3 = $2+$1

addu $3,$2, 3145 # Immediate add: $3 = $2+3145

sll $3,$2,2 # Shift left: $3 = $2 << 2

lw $3,16($2) # Load Word: $3 = M[$2+16]

sw $3,16($2) # Store Word: M[$2+16] = $3

Op Ra Rb Offset

Branch

beq $3,$2,dest # Branch when $3 = $2

– 27 – CS:APP

CISC vs. RISCCISC vs. RISC

Original DebateOriginal Debate

! Strong opinions!

! CISC proponents---easy for compiler, fewer code bytes

! RISC proponents---better for optimizing compilers, can make

run fast with simple chip design

Current StatusCurrent Status

! For desktop processors, choice of ISA not a technical issue

" With enough hardware, can make anything run fast

" Code compatibility more important

! For embedded processors, RISC makes sense

" Smaller, cheaper, less power

– 28 – CS:APP

SummarySummary

Y86 Instruction Set ArchitectureY86 Instruction Set Architecture

! Similar state and instructions as IA32

! Simpler encodings

! Somewhere between CISC and RISC

How Important is ISA Design?How Important is ISA Design?

! Less now than before

" With enough hardware, can make almost anything go fast

! Intel is moving away from IA32

" Does not allow enough parallel execution

" Introduced IA64

» 64-bit word sizes (overcome address space limitations)

» Radically different style of instruction set with explicit parallelism

» Requires sophisticated compilers

