
CMSC 311
Spring 2010

Lab 1: Bit Slinging

Tim Meyer

January 31, 2010

Post questions on this assignment to the CMSC 311 discussionboardhttp://www.elms.umd.edu/ .

Introduction

The purpose of this assignment is to become more familiar with bit-level representations and manipulations.
You’ll do this by solving a series of programming “puzzles.”Many of these puzzles are quite artificial, but
you’ll find yourself thinking much more about bits in workingyour way through them.

Logistics

You are expected to work alone on this assignment. The only “hand-in” will be electronic. All code will
be in C (ISO C99). Any clarifications and revisions to the assignment will be posted on the CMSC 311
discussion boardhttp://www.elms.umd.edu/ .

Hand Out Instructions

We will be using the linuxlab machines for this assignment. Log in to linuxlab.cs.umd.edu and
download the assignment file (datalab-handout.tar ) from BlackBoard (https://elms.umd.edu )
to a (protected) directory in which you plan to do your work. (Directories on linuxlab machines under your
home directory should be protected by default)

Then give the command:tar xzvf datalab-handout.tar . This will cause a number of files to be
unpacked in the directory. The only file you will be modifyingand turning in isbits.c .

The filebtest.c allows you to evaluate the functional correctness of your code. The fileREADMEcontains
additional documentation aboutbtest . Use the commandmake btest to generate the test code and run
it with the command./btest . The filedlc is a compiler binary that you can (AND SHOULD) use to
check your solutions for compliance with the coding rules. The remaining files are used to buildbtest .

1



Looking at the filebits.c you’ll notice a C structureteam into which you should insert the requested
identifying information about yourself. Do this right awayso you don’t forget. Use your directory ID for
the team name and login ID. Remember,this is an individual project.

The bits.c file also contains a skeleton for each of 17 programming puzzles. Your assignment is to
complete each function skeleton using onlystraight-line code (i.e., no loops, conditionals, or function calls)
and a limited number of C arithmetic and logical C operators.Specifically, you areonly allowed to use the
following eight operators:

! ˜ & ˆ | + << >>

Many of the functions further restrict this list. Also, you are not allowed to use any constants longer than 8
bits. See the comments inbits.c for detailed rules and a discussion of the desired coding style.

Evaluation

Your code will be compiled withGCC and run and tested on the submit server. Your score will be computed
out of a maximum of 80 points based on the following distribution:

45 Correctness of code running on the submit server; each puzzle is worth its difficulty rating in points.

34 Two points for each correct puzzle that does not exceed the maximum number of operators.

5 Style points, based on your instructor’s subjective evaluation of the quality of your solutions and your
comments.

Notice that there are 4 extra points built in for your benefit.Your grade will still be calculated out of 80.

The 17 puzzles you must solve have been given a difficulty rating between 1 and 4, such that their weighted
sum totals to 45. We will evaluate your functions using the test arguments inbtest.c . You will get full
credit for a puzzle if it passes all of the tests performed bybtest.c .

Regarding performance, our main concern at this point in thecourse is that you can get the right answer.
However, we want to instill in you a sense of keeping things asshort and simple as you can. Furthermore,
some of the puzzles can be solved by brute force, but we want you to be more clever. Thus, for each function
we’ve established a maximum number of operators that you areallowed to use. This limit is very generous
and is designed only to catch egregiously inefficient solutions. You will receive two points for each function
that satisfies the operator limit (and none otherwise). ALSO: YOU WILL GET NO POINTS FOR THE
FUNCTION IF YOU DID NOT MAKE AN ATTEMPT AT A SOLUTION. Partialcredit will be at the
discretion of the grader, and is different for each puzzle. Comments detailing your thoughts would be a
good idea if you have not passed some of the tests.

Finally, we’ve reserved 5 points for a subjective evaluation of the style of your solutions and your com-
menting. Your solutions should be as clean and straightforward as possible. Your comments should be
informative, but they need not be extensive. Do not remove/replace the exiting comments in the code, but
add comments on the code that you add.

2



The functions you will implement

1. bitAnd : (x & y) using only˜ and|
Example: bitAnd(0x6, 0x5) = 0x4
Legal ops:̃ |

2. minusOne : return a value of -1
Legal ops:! ˜ & ˆ | + << >>

3. tmax : return maximum two’s complement integer Legal ops:! ˜ & ˆ | + << >>

4. copyLSB : set all bits of result to least significant bit of x
Example: copyLSB(5) = 0xFFFFFFFF, copyLSB(6) = 0x00000000
Legal ops:! ˜ & ˆ | + << >>
Max ops: 5 * Rating: 2

5. evenBits : return word with all even-numbered bits set to 1
Legal ops:! ˜ & ˆ | + << >>

6. isEqual : if x == y then return 1, else return 0
Example: isLessOrEqual(4,5) = 0.
Legal ops: ! ˜ & ˆ | + << >>

7. negate - return -x without using minus
Legal ops: ! ˜ & ˆ | + << >>

8. addOK : Determine if can compute x+y without overflow
Example: addOK(0x80000000,0x80000000) = 0,
addOK(0x80000000,0x70000000) = 1.
Legal ops:! ˜ & ˆ | + << >>

9. bitMask : Generate a mask with 1’s from bitslowbit throughhighbit and 0’s everywhere else.
Examples:bitMask(5,3) = 0x38
Legal ops: ! ˜ & ˆ | + << >>

10. conditional : same as the conditional in C: x ? y : z
Example: conditional(2,4,5) = 4
Legal ops:! ˜ & ˆ | + << >>

11. isLess : if x < y then return 1, else return 0
Example: isLess(4,5) = 1, isLess(5,4) = 0
Legal ops:! ˜ & ˆ | + << >>

3



12. isPositive : return 1 if x> 0, else return 0
Example: isPositive(-1) = 0.
Legal ops:! ˜ & ˆ | + << >>
Max ops: 8 * Rating: 3

13. reverseBytes : reverse the bytes of x
Example: reverseBytes(0x01020304) = 0x04030201
Legal ops:! ˜ \& \ˆ | + << >>

14. bang : Compute !x without using !
Examples: bang(3) = 0, bang(0) = 1
Legal ops:̃ & ˆ | + << >> * Max ops: 12 * Rating: 4

15. isPower2 : returns 1 if x is a power of 2, and 0 otherwise
Examples: isPower2(5) = 0, isPower2(8) = 1, isPower2(0) = 0
Note that no negative number is a power of 2.
Legal ops:! ˜ & ˆ | + << >>

16. leastBitPos : return a mask that marks the position of the least significant 1 bit. If x == 0, return
0
Example: leastBitPos(96) = 0x20
Legal ops:! ˜ & ˆ | + << >>

17. sm2tc : Convert from sign-magnitude to two’s complement where themost significant bit (msb) is
the sign bit
Example: sm2tc(0x80000005) = -5
Legal ops:! ˜ & ˆ | + << >>

Advice

How are you supposed to know how to do any of this? Read The FineTextbook, and spend some quality
time with truth tables. Sometimes a problem that seems hard but gets fewer points than you expect is covered
in the textbook. . .

You are welcome to do your code development using any system or compiler you choose. Just make sure
that the version you turn in compiles and runs correctly on the submit server. If it doesn’t compile, we can’t
grade it.

The dlc program, a modified version of an ANSI C compiler, will be usedto check your programs for
compliance with the coding style rules. The typical usage is

./dlc bits.c

Type./dlc -help for a list of command line options. The README file is also helpful. Some notes on
dlc :

4



• Thedlc program runs silently unless it detects a problem.

• Don’t include<stdio.h> in yourbits.c file, as it confusesdlc and results in some non-intuitive
error messages.

Check the fileREADMEfor documentation on running thebtest program. You’ll find it helpful to work
through the functions one at a time, testing each one as you go. You can use the-f flag to instructbtest
to test only a single function, e.g.,./btest -f isPositive .

Hand In Instructions

• Make sure you have included your identifying information inyour file bits.c .

• Remove any extraneous print statements.

• Runmake clean before turning in your code.

You will turn in your bits.c file using the submit server. We will provide information on how to do that
on the class discussion board.

5


