| A-32 | nstruction Set
Architecture

CS 365 Lecture 4
Prof. Yih Huang

CS 365

General-Purpose Registers

Assembly Name Reg #
EAX 000
EBX 001
ECX 010
EDX 011
ESP 100
EDP 101

ESI 110
EDI 111

CS 365

31 16 15 87 0
EAX

|

' AX
L Je
I 1

AH AL

— —

OQWeadso have BX, BH, BL, CX, CH CL,
DX, CH, CL.

aSP, BP, SI, DI arelower-haves of the other
4 registers.

CS 365

QWhen operating on 16-bit data, the 7 register
numbers (000 — 111) refersto AX, BX, CX,
DX, SP, BP, Sl and DI.

QWhen operating on 8-bit data, the 7 register
numbers (000 — 111) refersto AL, CL, DL,
BL, AH, CL, DH and BL.

QData width is specified by the opcode.

CS 365

| nstruction Format

Opcode | ModR/M SIB displacement| Immediate

1 byte, 1 byte, 1,2 or 4 bytes 1,2 or 4 bytes

lor2
or 2 bytes If required If required If required If required

QOpcode: determine the action

AModR/M: Addressing modes register/memory
QSIB: Scale-Index-Base

QNot all fields are present in all instr.

Qlf present, must be in the above order

CS 365

ModR/M

Mod | Reg # R/M
2bits 3 bits 3 bits
QM od=00,

—First operand aregister, specified by Reg #

— Second operand in memory; address stored
in aregister numbered by R/M.

>That is, Memory[Reg[R/M]]
— Exceptions:

»>R/M=100 (SP): SIB needed

>»R/M=101 (BP): disp32 needed

CS 365

aMod=01, same as Mod 00 with 8-bit
displacement.

— Second operand: Memory[disp8+Reg[R/M].
— Exception: SIB needed when R/M=100

aMod=10, same as Mod 01 with 32-bit
displacement

OMod=11

— Second operand is also a register, numbered
by R/M.

CS 365

A Do not confuse displacement width with data
width.

—Datawidth is specified by the opcode.

—For example, the use of disp8 does not
imply 8-bit data.
QFor some opcodes, the reg# isused as an
extension of the opcode.

CS 365

SIB

Scale| Index Base

2 bits 3 bits 3 bits

A Specify how a memory addressis calculated
QAddress=Reg[base] + Reg[Index]* 2%
Q Exceptions:

— SP cannot be an index, and

—BP cannot be abase.

CS 365

Example: Add Instructions

QThefirst operand is the destination.
— Can be register or memory
A The second operand is the source
— Can be register or memory
QA The two operands cannot be both memory.
QAction: dest += source

CS 365

10

| 04 [immds| AL +=immd8

| 05 | immd32 | EAX += immd32
00 JmodrMm[=~ RmB+=r8

[01 [modRM] ~ Rm32+=r32

[03 Jmodrm[_ r32+=rm32

| 80 [t1000] |immds | RmM8 += immd8

| 81 [i1ooo| | immd32 |

CS 365

RmM32 += immd32

11

CS 365

Even Longer Varieties?

CS 365

Multiplication

| F7 ||100| | SIB/displacement if required

QAction: EDX:EAX —~ EAX x Rm32

QA Notice that the multiplier is fixed. It must be
EAX.

A The multiplicand can be register or memory.

13

CS 365

Special Purpose Instructions

A Decimal arithmetic

QStrings

QAMMX

ASIMD (single instruction multiple data)

14

MIPSversusl A32

QFixed instruction formats of MIPS
— Simple decoding logic
—Waste of memory space
— Limited addressing modes
QVariable length formats of 1A32
— Difficult to decode; sequential decoding
— Compact machine codes
— Accommodate versatile addressing modes

CS 365 15

QLarge pool of general purpose registersin
MIPS.
—No special considerations for particular
opcodes/registers; everything is born
equal.

>Well, there are exceptions. Can you name
one?

— Simplify programming and program
optimizations
— Good for compilations

CS 365 16

QSmall pool of registersin IA32

— Small amount of data stored inside CPU

> Recall that moving data between CPU and
memory is slow, compared to pure register
operations.

>Usually lead to inefficient code
—Many registers serve special purposes,
making programmer/compiler’ s job
difficult
»>Again could lead to inefficient code

CS 365

17

Q Operand architecture of MIPS
— Uses three register operands

—All data must be (explicitly) moved into
registers before the CPU and manipulate
them.

— Results have to be explicitly stored back to

memory.

— Creates longer machine codes but reflects

the reality.

CS 365

18

Q Operand architecture of 1A32
—One or two operands
— Operands in some instructions are fixed
and implied

»>Compact code but lack flexibilities
>Makes code optimizations difficult

— One operand can be memory
>No explicit load/stores; compact code

»Data are moved in/out of CPU anyway; no
gain in performance

CS 365

19

Q1A32 hasto be backward compatible with
previous 8/16 bit architectures.

— This contributes to its complexities, many

of which unnecessarily so

—However, Intel gets to keep its software
and customer base. BIG PLUS.

—Intel commands huge resources to push
improvements.

—Theresult is1A32 chips are generally on
par with other modern ISAs.

CS 365

20

10

QMIPS representation a new generation of
computer architectures.

—Cadled Reduced I nstruction Set
Computer (RISC)

—No corpses to carry; clean designs

—Everything is purposely kept simple.

—In theory, this shortens design cycles and
produces efficient implementations.

—In reality, you need people and money to
compete with Intel. Very difficult.

CS 365 21

11

