
Overview of IA-32 assembly
programming

Lars Ailo Bongo

University of Tromsø

1

Contents

1 Introduction .. 2
2 IA-32 assembly programming.. 3

2.1 Assembly Language Statements.. 3
2.1 Modes .. 4
2.2 Registers .. 4

2.2.3 Data Registers .. 4
2.2.4 Pointer and Index Registers.. 4
2.2.5 Control Registers.. 5
2.2.6 Segment registers ... 7

2.3 Addressing... 7
2.3.1 Bit and Byte Order ... 7
2.3.2 Data Types.. 7
2.3.3 Register Addressing Mode ... 7
2.3.4 Immediate Addressing Mode ... 8
2.3.5 Memory Addressing Modes ... 8

2.4 Stack.. 10
2.5 C procedure call convention.. 10

3 MASM Assembler directives ... 12
3.1 Data allocation... 12
3.2 Defining Constants.. 13

3.2.1 The EQU directive ... 13
3.2.2 The = directive ... 13

3.3 Multiple Source Program Modules ... 13
3.3.1 The PUBLIC Directive... 13
3.3.2 The EXTRN directive .. 14

4 Mixed language programming ... 15
4.1 Inline assembly.. 15
4.2 Using the Visual C++ debugger to test simple assembly programs........................ 15
4.3 Using assembly files in Visual C++.. 17
4.4 Understanding Assembly Listings .. 19

5 Examples .. 25
5.1 Arithmetic Instructions.. 25
5.2 Data Transfer (mov instruction).. 25
5.2 Jumps... 26

5.2.1 Unconditional Jump ... 26
5.2.2 Conditional Jumps.. 26

5.3 Function calls .. 27
5.4 The most useful IA-32 Instructions... 28

6 References .. 31

2

1 Introduction
I think the best introduction to assembly programming is [Patterson, Hennesy] chapters 3
and 4. I assume you have read those chapters and know how to program in MIPS
assembly, and are looking for a short guide on how to program in IA-32 assembly.
Unfortunately all the books and tutorials I have read are:

1. Too long (as a student I didn’t have time to read 1000 page books or tutorials).
2. Assuming that the reader is programming in MS-DOS.
3. Assuming that the reader needs to know about unimportant topics as BCD

arithmetic.

Therefore I wrote this short paper that hopefully teaches you all the basic things you need
to know to start programming in IA-32 assembly. The topics covered are:

• Most important aspects of the IA-32 architecture (registers, addressing modes,
stack).

• MASM assembler directives (i.e. how to use MASM to write IA-32 assembly
programs).

• How to use assembly code in your Visual C++ programs.
• How to read assembly listings produced by the Microsoft C compiler.

3

2 IA-32 assembly programming
This chapter is intended to be a reference you can use when programming in IA-32
assembly. It covers the most important aspects of the IA-32 architecture.

2.1 Assembly Language Statements

All assembly instructions, assembler directives and macros use the following format:

[label] mnemonic [operands] [; comment]

Fields in square brackets are optional.

Label: used to represent either an identifier or a constant.

Mnemonic: Identifies the purpose of the statement. A Mnemonic is not required if a line
contains only a label or a comment.

Operands: Specifies the data to be manipulated.

Comment: Text ignored by the assembler.

Example

; This is a comment
jmp label1 ; This is also a comment
add eax, ebx

label1:
sub edx, 32

Labels are in italic, mnemonics in bold, operands are underlined, and comments are in
regular text.

Most instructions take two operands. Usually one of the operands is in a register, and the
other can be in a register, memory or be an immediate value. In many instructions the
first operand is used as source and destination.

Example:

add eax, ebx ; EAX = EAX + EBX

4

2.1 Modes

Normally we only run in protected mode. But the Pentium processor can also run in real
mode (for backward compatibility), system management mode (power management) and
virtual 8086 mode (for backward compatibility).

2.2 Registers

This chapter is a summary of chapters 2, 3 and 5 from [Dandamudi]. Most of the figures
and examples are taken from this book. If you want a more detailed explanation (or a
better written one) you should buy and read this book.

2.2.3 Data Registers

The IA-32 processors provides four 32-bits data registers, they can be used as:

• Four 32-bits registers (EAX, EBX, ECX, EDX)
• Four 16-bits registers (AX, BX, CX, DX)
• Eight 8-bits registers (AL, AH, BL, BH, CL, CH, DL, DH)

32-bits registers (31...0) Bits 31...16 Bits 15...8 Bits 7...0

EAX AH AL

EBX BH BL

ECX CH CL

EDX DH DL

The data registers can be used in most arithmetic and logical instructions. But when
executing some instructions, some registers have special purposes.

2.2.4 Pointer and Index Registers

The IA-32 processors have four 32-bits index and pointer registers (ESI, EDI, ESP and
EBP). These registers can also be used as four 16-bits registers (SI, DI, SP and EP).

Usually ESI and EDI are used as regular data registers. But when using the string
instructions they have special functions.

ESP is the stack pointer, and EBP is the frame pointer. If you don't use stack frames, you
can use EBP as a regular data register.

5

32-bits registers (31...0) Bits 31...16 Bits 15...0 Special function

ESI SI Source index

EDI DI Destination index

ESP SP Stack pointer

EBP BP Frame pointer

2.2.5 Control Registers

The two most important control registers are the instruction pointer (EIP) and the EFlags
register.

The Pentium has also many other control registers, which are not covered in this
document (they control the operation of the processor, and applications cannot change
them).

The Instruction Pointer Register (EIP)

EIP points to the next instruction to be executed. EIP cannot be accessed directly.

The EFlags register

Six of the flags in the EFlags register are status or arithmetic flags. They are used to
record information about the most recently executed arithmetic or logical instruction.
Three of the flags: SF, PF and AF are rarely used.

• Zero Flag (ZF). This flag is set when the result of the last executed arithmetic
instruction was zero. ZF is used to test for equality or count down to a preset
value. Related instructions are: jz and jnz.

• Carry Flag (CF). CF is set if the last arithmetic operation (on two unsigned
integers) was either too big or too small (out of range). CF is used to propagate
carry or borrow, detect overflow/ underflow or test a bit (using shift/ rotate).
Related instructions are: jc, jnc, stc, clc, and cmc. Note that inc and dec does not
affect the carry flag.

• Overflow Flag (OF). OF indicates when an operation on signed integers resulted
in an overflow/underflow. Related instructions are: jo and jno.

• Sign Flag (SF). Indicates the sign of the result of an arithmetic operation. Related
instructions are: js and jns.

• Parity Flag (PF). Indicates the parity of the 8-bit result produced by an operation.
PF = 1 if the byte contains an even number 1 bits. It is used in data encoding
programs. Related instructions are jp and jnp.

6

• Auxiliary Flag (AF). Indicates whether an operation has produced a result that has
generated a carry, or borrow into the low-order four bits of 8- 16- or 32-bit
operands. AF is used in arithmetic operations on BCD numbers.

One of the flags is a control flag:

• Direction flag (DF). It determines wetter string operations should scan the string
forward or backward. It is only used in string instructions. DF can be set by std
and cleared by cld.

The remaining ten flags are system flags. They are used to control the operation of the
processor. Ordinary application programs cannot set these flags directly.

• TF (trap flag)
• IF (interrupt flag)
• IOPL (I/O privilege level)
• NT (nested task)
• RF (resume flag)
• VM (virtual 8086 mode)
• AC (alignment check)
• VIF (virtual interrupt flag)
• VIP (virtual interrupt pending)
• ID (ID flag)

Examples

mov EAX, 8 ; ZF = 0
sub EAX, 8 ; ZF = 1

cmp char, 0 ; ZF = 1 if char == '\0'
cmp EAX, EBX ; ZF = 1 if EAX = EBX

; for (i = 0; i < 12; i++)
mov ECX, 12 ; ECX 12

loop:
<do something>
dec ECX ; ECX = ECX - 1
jnz loop ; Jump if ZF = 0

mov AL, 100
add AL, 200 ; CF = 1

mov AX, 100
sub AX, 101 ; CF = 1 (any negative integer is out of range)

mov AL, 100
add AL, 30 ; OF = 1 (signed char range is -128...127)

Note that the processor does not know if you are using signed or unsigned integers. OF
and CF are set for every arithmetic operation.

7

mov AL, 15
add AL, 100 ; SF = 0 (positive result)

mov AL, 15
sub AL, 100 ; SF = 1 (negative result)

2.2.6 Segment registers

The Pentium processor has six 16-bits segment registers:

• CS (code segment)
• DS (data segment)
• SS (stack segment)
• ES (extra data segment)
• FS (extra data segment)
• GS (extra data segment)

Modern applications and operating systems (including Windows 2000 and Linux) use the
flat memory model (unsegmented memory model). In this model all segment registers are
loaded with the same segment selector. So all memory references are to a single linear-
address space.

2.3 Addressing

Most of the figures and examples are taken from [Dandamudi] chapter 5.

2.3.1 Bit and Byte Order

The Pentium processors uses little-endian byte order

2.3.2 Data Types

Data Type Size

Byte 8 bits

Word 16 bits

Doubleword 32 bits

Quadword 64 bits

2.3.3 Register Addressing Mode

The operand is in a register.

mov EAX, EBX ; move EBX to EAX

8

2.3.4 Immediate Addressing Mode

The operand is part of the instruction.

mov EAX, 132 ; move 132 to EAX

2.3.5 Memory Addressing Modes

Direct addressing mode

The operand is in memory, and the address is specified as an offset.

a_letter DB 'c' ; Allocate one byte of memory, initialize it to 'c'.
mov AL, a_letter ; Move data at memory location "a_letter" into AL.

; I.e. move 'c' to AL.

Register Indirect Addressing

The operand is found at the memory location specified by the register. The register is
enclosed in square bracket.

mov EAX, ESP ; Move stack pointer to EAX
mov EBX, [ESP] ; Move value at top-of-stack to EBX

The first move uses register addressing, and the second uses register indirect addressing.

Indirect Addressing Mode

The offset of the data is in one of the eight general-purpose registers.

.DATA
array DD 20 DUP (0) ; Array of 20 integers initialized to zero

.CODE
mov ECX, OFFSET array ; Move starting address of 'array' to ECX

The assembler directive OFFSET is used when we want to use the address of an element,
and not the contents of the element.

Note that:

mov ECX, array

moves the first element in array (array[0]) into ECX, and not the address of the first
element (&(array[0])).

9

Based Addressing

One of the eight general-purpose registers acts like a base register in computing the
effective address of an operand. The address is computed by adding a signed (8-bit or 32-
bit) number to the base address.

mov ECX, 20[EBP] ; ECX = memory[EBP + 20]

Indexed Addressing

The effective address is computed by:

(Index * scale factor) + signed displacement.

The beginning of the array is given by a displacement, and the value of the index register
(EAX, EBX, ECX, EDX, ESI, EDI, EBP) selects an element within the array. The scale
factor is used to specify how large the elements in the array are (in bytes). The scale
factor can only be 1, 2, 4 or 8.

add AX, [DI + 20] ; AX = AX + memory[DI + 20]
mov AX,table[ESI*4] ; AX = memory[OFFSET table + ESI * 4]
add AX, table[SI] ; AX = AX + memory[OFFSET table + ESI * 1]

Based-Indexed Addressing

In this addressing mode, the effective address is computed as:

Base + (Index * Scale factor) + signed displacement.

The beginning of the array is given by a base register (EAX, EBX, ECX, EDX, ESI, EDI,
EBP, ESP) and a displacement, and the value of the index register (EAX, EBX, ECX,
EDX, ESI, EDI, EBP) selects an element within the array. The scale factor is used to
specify how large the elements in the array are (in bytes). The scale factor can only be 1,
2, 4 or 8. The signed displacement must be either an 8, 16 or 32-bit value.

mov EAX, [EBX+ESI] ; AX = memory[EBX + (ESI * 1) + 0]
mov EAX, [EBX+EPI*4+2] ; AX = memory[EBX + (EPP * 4) + 2]

The PTR directive

Sometimes the assembler does not know how large values it is supposed to use, as shown
in the following example:

array SQWORD 20 DUP (0) ; int array[20];
mov ECX, OFFSET array ; ECX = &(array[0])
mov [ECX], 25 ; memory[ECX] = 25, but is '25' a 1-byte,

; 2-byte or 4-byte value?

10

To clarify we use the PTR directive (syntax: type-specifier PTR)

mov ECX, OFFSET array ; ECX = &(array[0])
mov [ECX], SQWORD PTR 25 ; memory[ECX] = 25, and '25' is a 4-byte

; value (signed quad word)

You should use the PTR directive when the operand size is not implicit with the register
name.

2.4 Stack

Properties:

• Pointed to by SS:ESP
• Only 32-bit data are pushed on the stack. (push al, uses 32-bits on the stack)
• The stack grows downward.
• ESP points to the last word saved on the stack.

Stack operation

push source:

1. ESP = ESP - 4
2. memory[ESP] = source

pop destination

1. destination = memory[ESP]
2. ESP = ESP + 4

Other stack operations are: pushfl (push EFlags), popfl (pop EFlags), pusha (push all
general-purpose registers), popa (pop all general-purpose registers)

2.5 C procedure call convention

The convention below is used by MASM, I don’t know if gas (“Linux” assembler) uses
the same convention.

When doing a function call, the caller must:

• Save EAX, EBX, ECX and EDX if they must be preserved.
• Push all arguments on the stack. The arguments are pushed from right to left.
• Invoke the function, by using the instruction call (call will push the return address

and jump to the called function)

11

Before the called function starts running it must:

• Save EBP, ESI, EDI, DS and SS if they are clobbered.
• Create a stack frame (if stack frames are used). This is done by setting:

1. EBP = ESP
2. ESP = ESP - frame size
o The stack frame must contain space for local variables.

• Save the direction flag (EFlags.DF), if it is altered.

Before the called function returns it must:

• Restore all saved registers and the direction flag (if it was saved)
• Pop the stack frame by setting ESP = EBP
• A return value is stored according to the table below.
• Return to the caller by using the ret instruction (ret pops the return address, and

jumps to it)

After returning from a function call, the caller must

• Pop all arguments. (Normally ESP is set to ESP + sizeof(arguments))
• Restore all saved registers.

Return Value
Data Type Is Saved in Register

char AL

short (16-bit) AX

int (32-bit) EAX

64-bit ECX:EAX

12

3 MASM Assembler directives
This chapter lists and explains the most important MASM directives.

The figures are from [MASM] and [Dandamudi]. Most of the examples are also taken
from this book (this chapter is really a summary of chapter 3 from [Dandamudi]).

3.1 Data allocation

The general format of a storage allocator is:

[variable-name] define-directive initial-value [,initial-value],...

Variable-name: identify the storage space allocated.

Define-directive: the following table shows the directives that can be used, and the size
in bytes:

The following directives indicate the size and value range of some integers and floating
point numbers:

Directive Description of Initializers
BYTE, DB (byte) Allocates unsigned numbers from 0 to 255.

SBYTE (signed byte) Allocates signed numbers from –128 to +127.

WORD, DW (word = 2 bytes) Allocates unsigned numbers from 0 to 65,535 (64K).

SWORD (signed word) Allocates signed numbers from –32,768 to +32,767.

DWORD, DD (doubleword = 4
bytes),

Allocates unsigned numbers from 0 to 4,294,967,295 (4
megabytes).

SDWORD (signed doubleword) Allocates signed numbers from –2,147,483,648 to
+2,147,483,647.

FWORD, DF (farword = 6 bytes) Allocates 6-byte (48-bit) integers. These values are
normally used only as pointer variables on the
80386/486 processors.

QWORD, DQ (quadword = 8
bytes)

Allocates 8-byte integers used with 8087-family
coprocessor instructions.

TBYTE, DT (10 bytes), Allocates 10-byte (80-bit) integers if the initializer has a
radix specifying the base of the number.

REAL4 Short (32-bit) real numbers

REAL8 Long (64-bit) real numbers

REAL10 10-byte (80-bit) real numbers and BCD numbers

13

Examples

letter_c DB 'c' ; Allocate a single byte of memory, and
; initialize it to the letter 'c'.

an_integer DD 12425 ; Allocate memory for an integer (4-bytes), and
; initialize it to 12425.

a_float REAL4 2.32 ; Allocate memory for a float, and initialize
; it to 2.32

message DB 'Hello',13,0 ; Allocate memory for a null terminated string
; "Hello\n"

marks DW 0, 0, 0, 0 ; Both allocates memory for an array of 4 * 2
; bytes, and initialize all elements to zero.

marks DW 4 DUP (0) ; DUP allows multiple initializations to the
; same value

name DB 30 DUP(?) ; Allocate memory for 30 bytes, uninitialized.
matrix QW 12*10 ; Allocate memory for a 12*10 quad-bytes matrix

We can also use the LABEL directive to name a memory location, the syntax is:

name LABEL type

3.2 Defining Constants

3.2.1 The EQU directive

Syntax: name EQU expression. It serves the same purpose as #define in C.

3.2.2 The = directive

Syntax: name = expression. The symbol that is defined by the = directive can be
redefined, but it cannot be used to define strings.

3.3 Multiple Source Program Modules

3.3.1 The PUBLIC Directive

Syntax: PUBLIC label1, label2, label3...

This directive makes the labels public, and therefore available from other modules
(source files).

Examples

PUBLIC error_msg, table
PUBLIC _a_C_function ; All C functions begin with an underscore

14

3.3.2 The EXTRN directive

Syntax: EXTRN label:type

This directive can be used to declare extern labels (variables, functions, etc). The table
below lists some types:

BYTE Data variable (8-bits)

WORD Data variable (16-bits)

DWORD Data variable (32-bits)

QWORD Data variable (64-bits)

PROC A procedure name

Examples

EXTRN error_msg:BYTE, table:DW
EXTRN _printf:PROC ; All C functions begin with an

; underscore.

Normally source files are included when compiling, and object files (libraries) when
linking.

15

4 Mixed language programming
This chapter covers three topics: how to write inline assembly in Visual C++, how you
can use Visual C++ to debug your assembly programs, and how to read assembly listings
(produced by the compiler).

4.1 Inline assembly

Inline assembly is used to insert assembly code into C source files.

In Visual C++ the keyword asm is placed before the inline assembly code, as shown in
the examples.

Examples

asm pushf ; Push the Eflags register

asm {
mov EAX, 0
sub EAX, 12

}

4.2 Using the Visual C++ debugger to test simple
assembly programs

If you want to see what simple assembly programs do with the data registers and memory
you can use the debugger in Visual C++.

To do this you need to:

1. Create a new (console) project in Visual C++.
2. Write your assembly code in inline assembly, as shown below.
3. Insert a breakpoint at the beginning of the assembly code (right click | Insert

Breakpoint)
4. Start debugging (Build | Start Debug | Go (F5)).
5. View register window or/and memory window (View | Debug Windows |

Registers or Memory).
6. Step trough the program (Debug | Step into (F11)). Then you can see what the

registers and memory contain after each executed instruction.
7. When you are done, you stop the debugger (Debug | Stop Debugging)

16

We can see in the figure that:

• The breakpoint is set to the beginning of the assembly code (red bullet).
• The next instruction to be executed is add eax, ebx (yellow arrow)
• That the last instruction executed changed registers EBX, and EIP (red color in

Registers window)

Note: By using this method your C programs will probably not function correctly, unless
you save and restore all registers that are clobbered in the assembly code.

17

4.3 Using assembly files in Visual C++

This chapter tells you how to use assembly files in a Visual C++ project.

First we write a C source file, which calls the assembly function:

#include <stdio.h>

/* Return a + b
* This function is in func.asm
*/

extern int assembly_function(int a, int b);

int main(void)
{

printf("14 + 21 = %d\n", assembly_function(14, 21));

return 0;
}

Then we write an assembly file that contains the function we are interested in:

.586 ; 32-bits (with Pentium instructions)

.MODEL flat ; Flat memory model (no-segmentation)

EXTERN _printf:NEAR ; printf is an external function

; assembly_function is a public function
; Note that all C functions begins with an underscore
PUBLIC _assmebly_function

.DATA ; Begin data segment

; printf() string (null terminated)
printf_msg DB 'Arguments: %d and %d\n', 0

.CODE ; Begin code segment
; assembly_function in C:
; int assembly_function(int a, int b)
; {
; int c = a + b;
;
; printf("Arguments: %d and %d\n", a, b);
;
; return c;
; }

; The = directive does the same as #define in C

; Location of arguments on the stack frame
_arg1 = 8 ; EBP + 8 = arg1 (a)
_arg2 = 12 ; EBP + 12 = arg2 (b)
; Location of local variables

18

_loc1 = -4 ; EBP - 4 = local variable (c)

_assembly_function:
push ebp ; Save old base pointer
mov ebp, esp ; Point EBP to top of stack
sub esp, 4 ; Make space on stack for local variable

mov eax, SDWORD PTR _arg1[ebp] ; Move argument 1 into eax
; Note that we specify that we are interested
; in moving 4 bytes (SDWORD PTR)
mov ebx, SDWORD PTR _arg2[ebp] ; Move argument 2 into ebx
mov ecx, eax ; ecx = eax
add ecx, ebx ; ecx = eax + ebx

; Save caller saved registers
; Note that we don't need to save eax and ebx, because they don't
; need to be preserved
push ecx
; Push printf arguments
push ebx ; Push argument 3
push eax ; Push argument 2
push OFFSET printf_msg ; Push address of string (argument 0)
call _printf
add esp, 12 ; Pop arguments

; Restore caller saved registers
pop ecx

mov eax, ecx ; Store return value in eax

mov esp, ebp ; ESP points to top of stack frame
pop ebp ; Restore EBP register
ret ; Return to caller

; End of source file
end

Then we need to assemble this file when building the project:

1. Insert file into project
2. Right-click on the filename in the FileView, and choose Settings.
3. Select the Custom Build tab.
4. In commands you write:

c:\masm611\bin\ml /c /coff /Zd $(InputName).asm
5. And in Outputs you write:

$(InputName).obj
6. Compile and run as usual.

19

4.4 Understanding Assembly Listings

One way to learn assembly programming is to study assembly listings produced by the
compiler. In this chapter I have commented the assembly listing produced by the
Microsoft compiler for the C program given in the next page.

C code:

#include <stdio.h>
#include "error_wrapper.h"

/* Just open the file given as the first command line
* argument.
*/

int main(int argc, char *argv[])
{

FILE *f;

/* First argument is the name of the executable file */
setprogname(argv[0]);

/* Second argument is the file to be opened */
if (argc < 2)

eprintf("Usage: error_wrapper filename");

f = fopen(argv[1], "r");
if (f == NULL)

eprintf("can't open file: %s", argv[1]);
fclose(f);

printf("File opened and closed without errors\n");

return 0;
}

Assembly output (my comments begins with three semicolons):

;;; Name of the c file ?
TITLE H:\d241_a00\assembly_example\error_wrapper_test.c

;;; 386 processor mode (P: enable the instructions available only at
higher privilege levels)

.386P

;;; This file contains assembler macros and is included by the files
;;; created with the -FA compiler switch to be assembled by MASM.
include listing.inc

;;; if MAMSM version > 5.1 then use flat memory model
;;; (no segmentation, code and data in the same segment)
;;; We use FLAT in Windows 2000
if @Version gt 510
.model FLAT

20

;;; Ignore this
else
_TEXT SEGMENT PARA USE32 PUBLIC 'CODE'
_TEXT ENDS
_DATA SEGMENT DWORD USE32 PUBLIC 'DATA'
_DATA ENDS
CONST SEGMENT DWORD USE32 PUBLIC 'CONST'
CONST ENDS
_BSS SEGMENT DWORD USE32 PUBLIC 'BSS'
_BSS ENDS
$$SYMBOLS SEGMENT BYTE USE32 'DEBSYM'
$$SYMBOLS ENDS
$$TYPES SEGMENT BYTE USE32 'DEBTYP'
$$TYPES ENDS
_TLS SEGMENT DWORD USE32 PUBLIC 'TLS'
_TLS ENDS
; COMDAT ??_C@_0BO@HHKP@Usage?3?5error_wrapper?5filename?$AA@
CONST SEGMENT DWORD USE32 PUBLIC 'CONST'
CONST ENDS
; COMDAT ??_C@_01LHO@r?$AA@
CONST SEGMENT DWORD USE32 PUBLIC 'CONST'
CONST ENDS
; COMDAT ??_C@_0BE@OCM@can?8t?5open?5file?3?5?$CFs?$AA@
CONST SEGMENT DWORD USE32 PUBLIC 'CONST'
CONST ENDS
; COMDAT ??_C@_0CH@BNAK@File?5opened?5and?5closed?5without?5e@
CONST SEGMENT DWORD USE32 PUBLIC 'CONST'
CONST ENDS
; COMDAT _main
_TEXT SEGMENT PARA USE32 PUBLIC 'CODE'
_TEXT ENDS
FLAT GROUP _DATA, CONST, _BSS

ASSUME CS: FLAT, DS: FLAT, SS: FLAT
endif

;;; Main is a public function (other modules can call it)
PUBLIC _main

;;; These are static string labels.
;;; Static strings must be public so that other modules can use them.
;;; (the module which printf() is in must access string ABC when we
;;; use: printf("ABC");
PUBLIC ??_C@_0BO@HHKP@Usage?3?5error_wrapper?5filename?$AA@ ; `string'
PUBLIC ??_C@_01LHO@r?$AA@ ; `string'
PUBLIC ??_C@_0BE@OCM@can?8t?5open?5file?3?5?$CFs?$AA@ ; `string'
PUBLIC ??_C@_0CH@BNAK@File?5opened?5and?5closed?5without?5e@ ; `string'

;;; These are external functions
EXTRN _fclose:NEAR
EXTRN _fopen:NEAR
EXTRN _printf:NEAR
EXTRN _eprintf:NEAR
EXTRN _setprogname:NEAR

;;; I think this one is a debugging function used to check that the
;;; stack frame is restored correctly.

21

EXTRN __chkesp:NEAR

; COMDAT ??_C@_0BO@HHKP@Usage?3?5error_wrapper?5filename?$AA@
; File H:\d241_a00\assembly_example\error_wrapper_test.c

;;; .CONST is used to define constant data that must be stored in
;;; memory.
;;; SEGMENT We define data in segments
;;; ??_C... I think is a label
;;; DB: byte aligned
;;; 'Usage...DB...filename, 00H: Data (a null terminated string)
;;; 'string': class, used to organize segments
;;; ENDS: end of this segment
CONST SEGMENT
??_C@_0BO@HHKP@Usage?3?5error_wrapper?5filename?$AA@ DB 'Usage:
error_wra'

DB 'pper filename', 00H ; `string'
CONST ENDS

;;; More static string definitions
; COMDAT ??_C@_01LHO@r?$AA@
CONST SEGMENT
??_C@_01LHO@r?$AA@ DB 'r', 00H ; `string'
CONST ENDS
; COMDAT ??_C@_0BE@OCM@can?8t?5open?5file?3?5?$CFs?$AA@
CONST SEGMENT
??_C@_0BE@OCM@can?8t?5open?5file?3?5?$CFs?$AA@ DB 'can''t open file:
%s', 00H ; `string'
CONST ENDS
; COMDAT ??_C@_0CH@BNAK@File?5opened?5and?5closed?5without?5e@
CONST SEGMENT
??_C@_0CH@BNAK@File?5opened?5and?5closed?5without?5e@ DB 'File opened
and'

DB ' closed without errors', 0aH, 00H ; `string'
CONST ENDS

; COMDAT _main
;;; Start of text (code) segment
_TEXT SEGMENT

;;; To access argument argc in the stack frame we can add _argc$ to the
;;; address EBP points to.
;;; At memory location [EBP] + 4 is the return address of the function
;;; that called this function
;;; At memory location [EBP] is the old stack frame pointer.
_argc$ = 8
_argv$ = 12
;;; If we had a third argument it would be at memory location [EBP] +
;;; 16

;;; To access local variable f in the stack frame we can add _f$ to the
;;; address EBP points to.
_f$ = -4
;;; If we had more local variables they would be at memory location:
;;; [EBP] - 8, [EBP] - 12... (Note that even char's use 4 bytes, we
;;; cannot push one byte on the stack)

22

;;; Main is a public procedure, and the code starts here.
_main PROC NEAR ; COMDAT

;;; C code
; 8 : {

;;; Epilogue code
;;;
;;; Save the old stack frame pointer

push ebp
;;; Establish a new stack frame

mov ebp, esp
;;; Create room for local variables. I don't know why it subtracts 68
;;; bytes when there is only one local variable. Performance?

sub esp, 68 ; 00000044H
;;; Save callee saved registers used in this function.

push ebx
push esi
push edi

;;; I think the following code "clears" the stack area reserved for
;;; local variables.
;;;
;;; Compute the effective address of the old stack frame pointer and
;;; store it in EDI.

lea edi, DWORD PTR [ebp-68]
;;; We want to repeat the strings instruction (stosd) 17 times.

mov ecx, 17 ; 00000011H
;;; I have no idea why the value ccccccccH is used.

mov eax, -858993460 ; ccccccccH
;;; for (i = 0; i < 17; i++)
;;; Store EAX at address (EDI + 4 * i)

rep stosd

; 9 : FILE *f;
; 10 :
; 11 : /* First argument is the name of the executable file */
; 12 : setprogname(argv[0]);

;;; Move argument argv into eax
mov eax, DWORD PTR _argv$[ebp]

;;; Move argv[0] into ecx
mov ecx, DWORD PTR [eax]

;;; Push the first (and only) argument...
push ecx

;;; ...and call the function
call _setprogname

;;; Pop the argument.
add esp, 4

; 13 :
; 14 : /* Second argument is the file to be opened */
; 15 : if (argc < 2)

;;; In IA-32 on of the operands can be in memory

23

cmp DWORD PTR _argc$[ebp], 2
;;; If 1st operand >= 2nd operand then goto label $L363

jge SHORT $L363

; 16 : eprintf("Usage: error_wrapper filename");

;;; Push static string as 1st argument
push OFFSET

FLAT:??_C@_0BO@HHKP@Usage?3?5error_wrapper?5filename?$AA@ ; `string'
;;; And call eprintf

call _eprintf
;;; Pop argument

add esp, 4

;;; Label to jump to, if argc >= 2
$L363:

; 17 :
; 18 : f = fopen(argv[1], "r");

;;; Push second argument, the static string "r"
push OFFSET FLAT:??_C@_01LHO@r?$AA@ ; `string'
mov edx, DWORD PTR _argv$[ebp]

;;; Move argv[1] into eax...
mov eax, DWORD PTR [edx+4]

;;; ...and push it as the second argument...
push eax

;;; ...to function fopen, which is called.
call _fopen

;;; Pop the arguments
add esp, 8

;;; Save the reurn value on the stack
;;; When compiled with debugging on every time a local variable is
changed,
;;; is stored on the stack

mov DWORD PTR _f$[ebp], eax

; 19 : if (f == NULL)

cmp DWORD PTR _f$[ebp], 0
jne SHORT $L367

; 20 : eprintf("can't open file: %s", argv[1]);

;;; Push argv[1] (the second argument)
mov ecx, DWORD PTR _argv$[ebp]
mov edx, DWORD PTR [ecx+4]
push edx

;;; And push the static string as the first argument
push OFFSET

FLAT:??_C@_0BE@OCM@can?8t?5open?5file?3?5?$CFs?$AA@ ; `string'
call _eprintf

;;; Pop arguments
add esp, 8

;;; Jump to this label if (f != NULL)

24

$L367:

; 21 : fclose(f);

;;; Move local variable f into eax, push it, call fclose, and pop the
;;; argument.

mov eax, DWORD PTR _f$[ebp]
push eax
call _fclose
add esp, 4

; 22 :
; 23 : printf("File opened and closed without errors\n");

push OFFSET
FLAT:??_C@_0CH@BNAK@File?5opened?5and?5closed?5without?5e@ ; `string'

call _printf
add esp, 4

; 24 :
; 25 : return 0;

;;; Return value is stored in eax
;;; xor eax, eaxc, is a fast way to store zero in eax

xor eax, eax

; 26 : }

;;; Epilouge code
;;;

;;; Restore saved calle save registers
pop edi
pop esi
pop ebx

;;; Pop the stack frame
add esp, 68 ; 00000044H

;;; I think this is a test to check that the old stack frame is
;;; restored

cmp ebp, esp
call __chkesp

;;; Restore the old stack frame.
mov esp, ebp

;;; Pop old stack frame pointer
pop ebp

;;; Return without poping any registers.
ret 0

;;; End of procedure main
_main ENDP
;;; End of code segment
_TEXT ENDS
;; End of the source code
END

25

5 Examples
This chapter contains a lot of examples. You should read and understand them all.

5.1 Arithmetic Instructions

C program:

f = (g + h) - (i + j);

Assembly:

; We assume that f, g, h, i and j are assigned to registers EAX, EBX,
ECX, EDX and ESI
mov EDI, EBX ; EDI = g
add EDI, ECX ; EDI = g + h
mov EAX, EDI ; EAX = (g + h)
mov EDI, EDX ; EDI = i
add EDI, ESI ; EDI = i + j
sub EAX, EDI ; EAX = (g + h) - (i + j)

5.2 Data Transfer (mov instruction)

.DATA
a_letter DB 'c' ; Allocate one byte of memory, initialize

; it to 'c'.
array DD 20 DUP (0) ; Array of 20 integers initialized to zero
qwa SQWORD 25 DUP (?) ; Array of 25 quadwords (64 bits),

; uninitialized
mov EAX, EBX ; EAX = EBX
mov EAX, 132 ; EAX = 132
mov a_letter, BYTE PTR EAX ; memory[a_letter] = AL (8 lsb of EAX)
mov EAX, [ESP] ; EAX = memory[ESP]
mov ECX, OFFSET array ; ECX = &(array[0])
mov ECX, array ; ECX = array[0]
mov EAX, array[ESI*4] ; EAX = EAX + memory[OFFSET table +

; ESI * 4]
mov EAX, [EBX+ESI] ; EAX = memory[EBX + (ESI * 1) + 0]
mov EAX, [EBX+ESI*4+2] ; EAX = memory[EBX + (ESI * 4) + 2]
mov ECX, OFFSET array ; ECX = &(array[0])
mov [ECX], SQWORD PTR 25 ; memory[ECX] = array[0] = 25

26

5.2 Jumps

5.2.1 Unconditional Jump

Infinite loop:

forever:
jmp forever

5.2.2 Conditional Jumps

If then else

if (a < 0) {
b = -5;

}
else if (a > 0) {

b = 5;
}
else {

b = 0;
}
; Assume that: a is in EAX, and that b is assigned to EBX

cmp EAX, 0
jge larger ; if (a >= 0) goto larger;

smaller: ; a < 0
mov EBX, -5 ; b = -5
jmp exit_if

larger:
cmp EAX, 0
jle equal ; if (a == 0) goto (we know that a >= 0, so it

; cannot be < 0)
mov EBX, 5 ; b = 5
jmp exit_if

equal:
mov EBX, 0 ; b = 0

exit_if: ; End of if then else

Loop

int i, vector[25];

for (i = 0; i < 25; i++)
vector[i] = 0;

27

Assembly:

; vector[] is allocated memory on the stack
_vector = -112 ; Start address of vector is EBP - 112
; Remember that the stack grows downward, and that local
; variables are below the frame pointer.
; You should also note that:
; vector[0] = memory[ebp + _vector]
; vector[13] = memory[ebp + _vector + 13*4]

start_loop:
mov ECX, 0 ; i = 0
jmp init_loop

loop:
add ECX, 1 ; i++

init_loop:
cmp ECX, 25
jge exit_loop ; if (i >= 25) goto exit_loop

body:
; memory[ebp + _vector + ecx * 4] = 0
; DWORD PTR because we want to move a double word (remember
; that vector is an array of int's)
mov DWORD PTR _vector[ebp + ecx * 4], 0

end_body:

jmp loop

exit_loop:

5.3 Function calls

C code:

void *emalloc(size_t size)
{

void *rp;

if (((rp = malloc(size))) == NULL) {
printf("Malloc error\n");
exit(1);

}

return rp;
}

Assembly:

PUBLIC _emalloc

.DATA

28

malloc_string DB 'Malloc error',13,0 ; Allocate memory for a
; null terminated string

_size$ = 8 ; memory[ebp + _size$] = argument
_rp$ = -4 ; memory[ebp + _rp$] = local variable
_emalloc:

push ebp ; Save old stack pointer
mov ebp, esp ; Create a new stack frame
sub esp, 4 ; Allocate memory for local

; variabels

mov eax, _size$[ebp] ; Move argument 'size' to EAX
push eax ; Push malloc() argument
call _malloc ; Call malloc
add esp, 4 ; Pop arguments
mov _rp$[ebp], eax ; Save return value on the stack
cmp eax, 0 ; Return value is in EAX (is

; compared to 0 = NULL)
jne no_error ; if (return value != NULL) goto

; no_error

error:
push OFFSET malloc_string ; First argument to printf() is

; the address of the string
call _printf ; Call printf
add esp, 4 ; Pop argument

push 1 ; First argument to exit()
call _exit ; Call exit
; Note that we never return from exit()

no_error:
mov eax, _rp$[ebp] ; Move return value into eax
mov esp, ebp ; Restore stack pointer
pop ebp ; Restore old stack frame
ret ; Return to caller

5.4 The most useful IA-32 Instructions

Category Instruction Example Meaning

add add EAX, EBX EAX = EAX + EBX

subtract sub EAX, EBX EAX = EAX - EBX

add immediate add EAX, 200 EAX = EAX + 200

add unsigned1 add EAX, EBX EAX = EAX + EBX

add immediate
unsigned

Don't exist

multiply imul EBX
EDX:EAX = EAX *
EBX

imul ECX, EBX ECX = ECX * EBX

Arithmetic

imul ECX, EBX, 200 ECX = EBX * 200

29

imul ECX, 200 ECX = ECX * 200

multiply unsigned mul ECX
EDX:EAX = EAX *
ECX

divide idiv ECX
EAX = EDX:EAX /
ECX, EDX =
EDX:EAX % ECX

divide unsinged div ECX
EAX = EDX:EAX /
ECX, EDX = EDX:
EAX % ECX

and and EAX, EBX EAX = EAX & EBX

or or EAX, EBX EAX = EAX | EBX

shift left logical shl EAX, EBX
EAX = EAX <<
EBX

Logical

shift right logical shr EAX, EBX
EAX = EAX >>
EBX

xor xor EAX, EBX EAX = EAX ^ EBX

mov2 mov EAX, EBX EAX = EBX

mov EAX, 200 EAX = 200

mov EAX, [ESP]
EAX =
memory[ESP]

mov EAX, label
EAX =
memory[label]

mov EAX, OFFSET
array

EAX = &(array[0])

3
mov EAX,
table[ESI*4]

AX = memory[
OFFSET table + ESI
* 4]

3
mov E AX,
[EBX+ESI*4+2] ;

E AX = memory[E
BX + (ESI * 4) + 2]

push push EAX
ESP = ESP - 4;
memory[ESP] =
EAX

Data transfer

pop pop EAX
EAX =
memory[ESP]; ESP
= ESP + 4

Compare compare cmp EAX, EBX
EAX - EBX. Set
control flags.

Conditional jumps jump if equal4 je label
Jump to label if Zero
Flag (ZF) is set

30

jump if zero4 jz label
Jump to label if ZF =
1

jump if not equal4 jne label
Jump to label if ZF =
0

jump if not zero4 jnz label
Jump to label if ZF =
0

jump if CX is zero jcxz label
Jump to label if CX =
0

jump if carry jc
Jump to label if
Carry Flag (CF) is set

jump if not carry jnc
Jump to label if CF =
0

jump if overflow jo label
Jump to label if
Overflow Flag (OF)
is set

jump if not overlow jno label
Jump to label if OF =
0

jump is sign js label
Jump to label if Sign
Flag (SF) is set
(negative sign)

jump is not sign jns label
Jump to label if SF =
0 (postive sign)

jump jmp label Jump to label
Unconditional jump

jump register jmp EAX
Jump to address in
EAX

Instruction call call call function_label
Push EIP and jump to
function_label

Instruction return ret ret
Pop return address,
and jump to it

increment inc EAX EAX = EAX + 1

decrement dec EAX EAX = EAX - 1

no operation nop Do nothing

test test EAX, EBX
EAX & EBX. Set
control flags.

Other

exchange values xchg EAX, EBX
tmp = EAX; EAX =
EBX; EBX = tmp

1 The processor don't care if it is a signed value, it evaluates the result for both values.

31

2 Note that IA-32 is not a load-store architecture; most of the instructions can have one of
the operands in memory.

3 Only ESI and EDI can be used as the displacement register.

4 Use cmp or test to set control flags (ZF, CF, OF, SF, PF).

6 References
Sivarama, P. Dandamudi, Introduction To Assembly Language Programming; From 8086
to Pentium Processor, Springer 1998

Patterson, David A. / Hennesy, John L., Computer Organization & Design The Hardware
/ Software Interface, Second Edition, Morgan Kaufmann Publishers 1998

Intel Architecture Software Developers Manual Volume 1, 2 and 3, Intel

Microsoft MASM Programmers Guide, Microsoft

Shanley, Paul, Protected Mode Software Architecture, Mindshare Inc 1996

Li, Kay, A Guide to Programming Pentium/Pentium Pro Processors, Princeton
University

