Overview of | A-32 assembly
programming

LarsAilo Bongo

University of Tromsg

Contents

I g1 0o [N o o o TSP 2
2 1A-32 assembly Programiming..........ccceoeeeeieneniee e s e e e e 3
2.1 Assembly Language StEEEMENES.........oouererreieeeeriesieeie e see st s 3
2L IMOOES....... ettt e ettt b et ae et e ebe e et e h e a b et e e e e 4
Y = o 1 (< £ TSRO PRR 4

2. 2.3 DAAREGISIES ..ottt e 4
2.2.4 Pointer and INAEX REJISIENS......ccuuieiiereeeerieriie et 4
2.2.5 CONLIOl REJISIEIS... .ottt st e e e e eneens 5
2.2.6 SEOMENT FEOISIEN'S ...ttt ettt be et saeeneennens 7

PR N [0 (=55] o OSSR 7
2.3.1 Bit 8N BYLE OFAEScoeiieiiiiiteeee ettt et 7
2.3.2 DAA TYPES. .ottt ettt ettt e h e nae e san e s 7
2.3.3 Register Addressing MOGE. ..o e e 7
2.3. 4 Immediate ADdressing MOEooeiiiieiieiieeee e e 8
2.3.5Memory Addressing MOES...........coiiiirieiiirieree e e e 8

2.4 SEACK ... bbbt 10
2.5 C procedure Call CONVENTTION.........cuiiiiiriie e eieie et s enes 10

S MASM ASSEMDIEr ITECLIVES.....coeiiei it e 12
R DT =X | [o1ox= i (o] o FU USROS 12
3.2 DEfINING CONSLANES......oeiiiecieeierieeie sttt e e sa e e e e eaas 13
321 The EQU TITECLIVE ..ottt ettt 13

3. 2.2 TNE = AIFECLIVE ...ttt n e 13

3.3 Multiple Source Program MOCUIES...........c.ooriiierierieeee e 13
3.3. 1 ThE PUBLIC DIFECLIVE......ccuiitieieiee ettt st 13
3.3.2ThEe EXTRN AIF€CHVE ...t 14

4 Mixed 1anguage ProgramMiNgc.ccceeoeeeereeeeereesseseessesessssssesesssessesssssessessssssesneees 15
4.1 INHNE @SSEMDIY ...t s sr e 15
4.2 Using the Visual C++ debugger to test smple assembly programs...........c.cccceeueee 15
4.3 Using assembly fileSin Visual Ct. ..o 17
4.4 Understanding Assembly LiStiNGSccvevieieeiieiiee e seeee et 19

L = 101 0] =S SRR 25
5.1 ArithmEtiC INSIIUCHIONS.cc.eiiiiieeiieie et s 25
5.2 Data Transfer (MOV INSIFUCTION)oiviiiiieieie st 25
LA U1 010 LTSRN 26
5.2.2UNCONAItioNal JUMP ...vevieiieiiiie ettt st 26
5.2.2 CoNAItioNal JUMPS....c.veiuieieiiiieie e seeseesiesseeie e sesste e e e ssessees e ssesnesseessesneenes 26

S5.3 FUNCHON CalIS ...ttt st 27
5.4 The most useful IA-32 INSLIUCLIONS........ccviieiiriirieseeee et 28

L S 1 (=00 PSSP R 31

1 Introduction

| think the best introduction to assembly programming is [Patterson, Hennesy] chapters 3
and 4. | assume you have read those chapters and know how to program in MIPS
assembly, and are looking for a short guide on how to programin 1A-32 assembly.
Unfortunately all the books and tutorials | have read are:

1. Toolong (asastudent | didn't have timeto read 1000 page books or tutorials).

2. Assuming that the reader is programming in MS-DOS.

3. Assuming that the reader needs to know about unimportant topics as BCD
arithmetic.

Therefore | wrote this short paper that hopefully teaches you all the basic things you need
to know to start programming in |A-32 assembly. The topics covered are:

* Most important aspects of the |A-32 architecture (registers, addressing modes,
stack).

* MASM assembler directives (i.e. how to use MASM to write | A-32 assembly
programs).

* How to use assembly code in your Visual C++ programs.

* How to read assembly listings produced by the Microsoft C compiler.

2 | A-32 assembly programming

This chapter isintended to be areference you can use when programming in |A-32
assembly. It covers the most important aspects of the 1A-32 architecture.

2.1 Assembly Language Statements

All assembly instructions, assembler directives and macros use the following format:
[label] mnemonic [operands] [; comment]

Fields in square brackets are optional.

L abel: used to represent either an identifier or a constant.

Mnemonic: ldentifies the purpose of the statement. A Mnemonic is not required if aline
contains only alabel or acomment.

Operands: Specifies the data to be manipulated.
Comment: Text ignored by the assembler.
Example

: Thisisacomment

jmp labell ; Thisisaso acomment
add eax, ebx

label 1:
sub edx, 32

Labelsarein italic, mnemonics in bold, operands are underlined, and comments arein
regular text.

Most instructions take two operands. Usually one of the operandsisin aregister, and the

other can be in aregister, memory or be an immediate value. In many instructions the
first operand is used as source and destination.

Example:

add eax, ebx ;. EAX = EAX + EBX

2.1 Modes

Normally we only run in protected mode. But the Pentium processor can also run in real
mode (for backward compatibility), system management mode (power management) and
virtual 8086 mode (for backward compatibility).

2.2 Registers

This chapter is a summary of chapters 2, 3 and 5 from [Dandamudi]. Most of the figures
and examples are taken from this book. If you want a more detailed explanation (or a
better written one) you should buy and read this book.

2.2.3 Data Registers
The 1A-32 processors provides four 32-bits data registers, they can be used as:
« Four 32-bitsregisters (EAX, EBX, ECX, EDX)

« Four 16-bitsregisters (AX, BX, CX, DX)
- Eight 8-bitsregisters (AL, AH, BL, BH, CL, CH, DL, DH)

32-bitsregisters(31...0) |Bits31...16 BBits15...8 |Bits7...0
[EAX | /AH AL
[EBX | BH BL
[ECX | ICH ICL
[EDX | IDH DL

The data registers can be used in most arithmetic and logical instructions. But when
executing some instructions, some registers have special purposes.

2.2.4 Pointer and Index Registers

The | A-32 processors have four 32-bits index and pointer registers (ESI, EDI, ESP and
EBP). These registers can also be used as four 16-bitsregisters (S, DI, SP and EP).

Usually ESI and EDI are used as regular data registers. But when using the string
instructions they have specia functions.

ESP isthe stack pointer, and EBP is the frame pointer. If you don't use stack frames, you
can use EBP as aregular dataregister.

32-bitsregisters(31...0) Bits 31...16 ‘Bits 15..0 ‘Special function
ES| | Sl Source index
EDI | DI Destination index
[ESP | 'SP |Stack pointer
[EBP | BP Frame pointer

2.2.5 Control Registers

The two most important control registers are the instruction pointer (EIP) and the EFlags
register.

The Pentium has also many other control registers, which are not covered in this
document (they control the operation of the processor, and applications cannot change
them).

Thelnstruction Pointer Register (EIP)

EIP points to the next instruction to be executed. EIP cannot be accessed directly.

The EFlagsregister

Six of the flags in the EFlags register are status or arithmetic flags. They are used to
record information about the most recently executed arithmetic or logical instruction.
Three of the flags: SF, PF and AF arerarely used.

« Zero Flag (ZF). Thisflag is set when the result of the last executed arithmetic
instruction was zero. ZF is used to test for equality or count down to a preset
value. Related instructions are: jz and jnz.

« Carry Flag (CF). CFisset if the last arithmetic operation (on two unsigned
integers) was either too big or too small (out of range). CF is used to propagate
carry or borrow, detect overflow/ underflow or test a bit (using shift/ rotate).
Related instructions are: jc, jnc, stc, clc, and cme. Note that inc and dec does not
affect the carry flag.

« Overflow Flag (OF). OF indicates when an operation on signed integers resulted
in an overflow/underflow. Related instructions are: jo and jno.

« Sign FHag (SF). Indicates the sign of the result of an arithmetic operation. Related
instructions are: jsand jns.

+ Parity Hag (PF). Indicates the parity of the 8-bit result produced by an operation.
PF = 1if the byte contains an even number 1 bits. It is used in data encoding
programs. Related instructions are jp and jnp.

« Auxiliary Flag (AF). Indicates whether an operation has produced aresult that has
generated acarry, or borrow into the low-order four bits of 8- 16- or 32-bit
operands. AF is used in arithmetic operations on BCD numbers.

One of theflagsis acontrol flag:

+ Direction flag (DF). It determines wetter string operations should scan the string
forward or backward. It isonly used in string instructions. DF can be set by std
and cleared by cld.

The remaining ten flags are system flags. They are used to control the operation of the
processor. Ordinary application programs cannot set these flags directly.

« TF(trap flag)

« IF (interrupt flag)

« |OPL (1/O privilege level)

« NT (nested task)

+ RF (resume flag)

+ VM (virtual 8086 mode)

+ AC (aignment check)

« VIF (virtual interrupt flag)

« VIP (virtual interrupt pending)

. 1D (ID flag)
Examples

nmov EAX, 8 ; ZF =0

sub EAX, 8 ; ZF =1

cnp char, 0 ; ZF =1 if char == "'\0
cnmp EAX, EBX ; ZF = 1 if EAX = EBX

;o for (1 =0; 1 < 12; i++4)
nov ECX, 12 ; ECX 12

| oop:
<do sonet hi ng>
dec ECX ; ECX = ECX - 1
jnz | oop ; Jump if ZF = 0
nmov AL, 100
add AL, 200 ; CF =1
nov AX, 100
sub AX, 101 ; CF = 1 (any negative integer is out of range)
nov AL, 100
add AL, 30 ; OF = 1 (signed char range is -128...127)

Note that the processor does not know if you are using signed or unsigned integers. OF
and CF are set for every arithmetic operation.

nov AL, 15
add AL, 100 ; SF = 0 (positive result)
nov AL, 15
sub AL, 100 ; SF = 1 (negative result)

2.2.6 Segment registers
The Pentium processor has six 16-bits segment registers:

CS (code segment)
DS (data segment)
SS (stack segment)
ES (extra data segment)
FS (extra data segment)
GS (extra data segment)

Modern applications and operating systems (including Windows 2000 and Linux) use the
flat memory model (unsegmented memory model). In this model all segment registers are
loaded with the same segment selector. So all memory references are to a single linear-
address space.

2.3 Addressing

Most of the figures and examples are taken from [Dandamudi] chapter 5.

2.3.1 Bit and Byte Order

The Pentium processors uses little-endian byte order

2.3.2 Data Types
DataType (Size
Byte 8 bits
'Word 116 bits

'Doubleword |32 bits
‘Quadword |64 hits

2.3.3 Register Addressing Mode

The operand isin aregister.

nov EAX, EBX ; npbve EBX to EAX

2.3.4 Immediate Addressing Mode

The operand is part of theinstruction.

nov EAX, 132 ; nove 132 to EAX
2.3.5Memory Addressing Modes
Direct addressing mode

The operand isin memory, and the address is specified as an offset.

a letter DB 'c' ; Allocate one byte of nenory, initialize it to 'c'.
mov AL, a letter ; Move data at nenory location "a_letter" into AL.
; I.e. move 'c' to AL.

Register Indirect Addressing

The operand is found at the memory location specified by the register. The register is
enclosed in square bracket.

mov EAX, ESP ; Move stack pointer to EAX
mov EBX, [ESP] ; Move value at top-of-stack to EBX

Thefirst move uses register addressing, and the second uses register indirect addressing.
Indirect Addressing Mode

The offset of the dataisin one of the eight general-purpose registers.

. DATA

array DD 20 DUP (0) ; Array of 20 integers initialized to zero
. CODE

nmov ECX, OFFSET array ; Move starting address of 'array' to ECX

The assembl er directive OFFSET is used when we want to use the address of an element,
and not the contents of the element.

Note that:
mov ECX, array

moves the first element in array (array[0]) into ECX, and not the address of the first
element (& (array[0])).

Based Addressing

One of the eight general-purpose registers acts like a base register in computing the
effective address of an operand. The address is computed by adding a signed (8-bit or 32-
bit) number to the base address.

nmov ECX, 20[EBP] ; ECX = nenory[EBP + 20]

Indexed Addressing

The effective address is computed by:

(Index * scale factor) + signed displacement.

The beginning of the array is given by a displacement, and the value of the index register
(EAX, EBX, ECX, EDX, ESI, EDI, EBP) selects an element within the array. The scale

factor is used to specify how large the elementsin the array are (in bytes). The scale
factor canonly be 1, 2,4 or 8.

add AX, [D + 20] ; AX = AX + nenory[DI + 20]
nov AX, tabl e[ESI*4] ; AX = nenory[OFFSET table + ESI * 4]
add AX, table[SI] ; AX = AX + nenory[OFFSET table + ESI * 1]

Based-I ndexed Addressing
In this addressing mode, the effective address is computed as:
Base + (Index * Scale factor) + signed displacement.

The beginning of the array is given by a base register (EAX, EBX, ECX, EDX, ESI, EDI,
EBP, ESP) and a displacement, and the value of the index register (EAX, EBX, ECX,
EDX, ESI, EDI, EBP) selects an e ement within the array. The scale factor is used to
specify how large the elementsin the array are (in bytes). The scale factor can only be 1,
2, 4 or 8. The signed displacement must be either an 8, 16 or 32-bit value.

nov EAX, [EBX+ESI] . AX
nmov EAX, [EBX+EPI*4+2] ; AX

menory[EBX + (ESI * 1) + 0]
menory[EBX + (EPP * 4) + 2]

The PTR directive

Sometimes the assembler does not know how large valuesit is supposed to use, as shown
in the following example:

array SQAORD 20 DUP (0) ; int array[20];

mov ECX, OFFSET array ; ECX = &(array[0])

mov [ECX], 25 ; menmory[ECX] = 25, but is '25' a 1-byte,
; 2-byte or 4-byte val ue?

To clarify we use the PTR directive (syntax: type-specifier PTR)

mov ECX, OFFSET array ; ECX = &(array[0])
mov [ECX], SQAORD PTR 25 ; menmory[ECX] = 25, and '25' is a 4-byte
; value (signed quad word)

Y ou should use the PTR directive when the operand size is not implicit with the register
name.

2.4 Stack
Properties:
+ Pointed to by SS:ESP
« Only 32-hit data are pushed on the stack. (push al, uses 32-hits on the stack)
+ Thestack grows downward.
+ ESPpointsto the last word saved on the stack.
Stack operation

push source:

1. ESP=ESP-4
2. memory[ESP] = source

pop destination

1. destination = memory[ESP]
2. ESP=ESP+4

Other stack operations are: pushfl (push EFlags), popfl (pop EFl ags), pusha (push all
general-purpose registers), popa (pop all genera -purpose registers)

2.5 C procedure call convention

The convention below is used by MASM, | don’t know if gas (“Linux” assembler) uses
the same convention.

When doing a function cdl, the caller must:
+ SaveEAX, EBX, ECX and EDX if they must be preserved.
« Push all arguments on the stack. The arguments are pushed from right to left.

+ Invoke the function, by using the instruction call (call will push the return address
and jump to the called function)

10

Before the called function starts running it must:

+ SaveEBP, ESI, EDI, DS and SSiif they are clobbered.

+ Create astack frame (if stack frames are used). This is done by setting:
1. EBP=ESP
2. ESP=ESP- framesize
o Thestack frame must contain space for local variables.

« Savethedirection flag (EFlags.DF), if it is atered.

Before the called function returns it must:

+ Restore all saved registers and the direction flag (if it was saved)

+ Pop the stack frame by setting ESP = EBP

« A return valueis stored according to the table below.

+ Return to the caller by using the ret instruction (ret pops the return address, and
jumpsto it)

After returning from afunction call, the caller must

« Popall arguments. (Normally ESP is set to ESP + sizeof(arguments))
+ Restore al saved registers.

Sggr_lr_ly\églue Is Saved in Register
char AL

short (16-bit) |AX

lint (32-hit) [EAX

64-bit [ECX:EAX

11

3MASM Assembler directives

This chapter lists and explains the most important MASM directives.

The figures are from [MASM] and [Dandamudi]. Most of the examples are also taken
from this book (this chapter isreally a summary of chapter 3 from [Dandamudi]).

3.1 Data allocation

The general format of a storage alocator is:
[variable-name] define-directiveinitial-value [,initial-valug],...
Variable-name: identify the storage space alocated.

Define-directive: the following table shows the directives that can be used, and the size
in bytes:

The following directives indicate the size and value range of some integers and floating
point numbers:

Directive Description of Initializers

BYTE, DB (byte) /Allocates unsigned numbers from 0 to 255.

'SBYTE (signed byte) Allocates signed numbers from —128 to +127.

WORD, DW (word = 2 bytes) Allocates unsigned numbers from O to 65,535 (64K).

'SWORD (signed word) /Allocates signed numbers from —32,768 to +32,767.

DWORD, DD (doubleword = 4 Allocates unsigned numbers from 0 to 4,294,967,295 (4

bytes), megabytes).

SDWORD (signed doubleword) Allocates signed numbers from —2,147,483,648 to
+2,147,483,647.

FWORD, DF (farword = 6 bytes) |Allocates 6-byte (48-bit) integers. These values are
normally used only as pointer variables on the

80386/486 processors.

QWORD, DQ (quadword = 8 Allocates 8-byte integers used with 8087-family

bytes) Coprocessor instructions.

TBYTE, DT (10 bytes), Allocates 10-byte (80-bit) integersif theinitidizer hasa
radix specifying the base of the number.

REAL4 Short (32-bit) real numbers

REALS8 ILong (64-bit) real numbers

REAL10 110-byte (80-bit) real numbers and BCD numbers

12

Examples

letter ¢ DB 'c' ; Allocate a single byte of nenory, and
initialize it to the letter 'c'.
an_i nteger DD 12425 ; Allocate nenory for an integer (4-bytes), and

initialize it to 12425.

Al'locate nenory for a float, and initialize
it to 2.32

Al'locate nenory for a null terminated string
"Hel | o\ n"

Both allocates nmenory for an array of 4 * 2
bytes, and initialize all elements to zero.

a_float REAL4 2.32
message DB 'Hello', 13,0

marks DWO, 0, 0, O

mar ks DW 4 DUP (0) ; DUP allows multiple initializations to the

; sanme val ue
name DB 30 DUP(?) ; Allocate nmenory for 30 bytes, uninitialized
matrix QW 12*10 ; Allocate nenory for a 12*10 quad-bytes matri x

We can aso use the LABEL directive to name a memory location, the syntax is:

name LABEL type

3.2 Defining Constants

3.2.1 The EQU directive
Syntax: name EQU expression. It serves the same purpose as #definein C.
3.2.2 The=directive

Syntax: name = expression. The symbol that is defined by the = directive can be
redefined, but it cannot be used to define strings.

3.3 Multiple Sour ce Program Modules

3.3.1 The PUBLIC Directive
Syntax: PUBLIC label1, label2, |abel3...

This directive makes the labels public, and therefore available from other modules
(sourcefiles).

Examples

PUBLI C error_nsg, table
PUBLIC _a_C function ; All C functions begin with an underscore

13

3.3.2 The EXTRN directive
Syntax: EXTRN label:type

This directive can be used to declare extern labels (variables, functions, etc). The table
below lists some types:

BYTE Data variable (8-bits)
'WORD Data variable (16-bits)
DWORD |Datavariable (32-bits)
'QWORD |Datavariable (64-hits)
'PROC /A procedure name

Examples

EXTRN error_nsg: BYTE, table: DW
EXTRN _printf: PROC ; All C functions begin with an
; underscore.

Normally source files are included when compiling, and object files (libraries) when
linking.

4 Mixed language programming

This chapter covers three topics: how to write inline assembly in Visual C++, how you
can use Visual C++ to debug your assembly programs, and how to read assembly listings
(produced by the compiler).

4.1 Inline assembly

Inline assembly is used to insert assembly code into C source files.

In Visual C++ the keyword asm is placed before the inline assembly code, as shownin
the examples.

Examples

asm pushf ; Push the Eflags register

asm {
mov EAX, 0
sub EAX, 12
}

4.2 Using the Visual C++ debugger totest simple
assembly programs

If you want to see what simple assembly programs do with the data registers and memory
you can use the debugger in Visual C++.

To do this you need to:

1. Create anew (console) project in Visual C++.

2. Write your assembly code in inline assembly, as shown below.

3. Insert abreakpoint at the beginning of the assembly code (right click | Insert
Breakpoint)

4. Start debugging (Build | Start Debug | Go (F5)).

5. View register window or/and memory window (View | Debug Windows |
Registers or Memory).

6. Step trough the program (Debug | Step into (F11)). Then you can see what the
registers and memory contain after each executed instruction.

7. When you are done, you stop the debugger (Debug | Stop Debugging)

15

We can seein the figure that:

+ Thebreakpoint is set to the beginning of the assembly code (red bullet).

« Thenext instruction to be executed is add eax, ebx (yellow arrow)

« That the last instruction executed changed registers EBX, and EIP (red color in
Registers window)

*.. debugger - Microsoft Yisual C++ [break] - [E...\debugger' debugger.c]

Jl File: Edit Mjew Imsert Project Debug Tools Window Help

B sEHD | Bd 2y | D[EE |
(Globals) =] i glabal members) =|| g main
int main(woid)
{
__a=m |
& mow eax, 0 coeax = 0
o ebx, 7 ;ebx = 7
= add eax, ebx ; 2Aa¥ = eax + shx
h
return 0
I
Registers 2l
EAX = 00000000 EBX = OO0OOOO07 ;
ECK = 00000000 EDX = 00341518
ESI = 00000000 EDI = DO012FF&0
EIF = 0040D3EZ ESF = 0012FF34
EEF = 0012FF80 EFL = 00000202
MMO = 0000000000000000
[|
= -) i =
j I:gnl:az-:t.lmaln[] _‘
Hame |'1|I"alue
Sax 1|
ehx f__'?
T, auto [Locals 3, this /1

Note: By using this method your C programs will probably not function correctly, unless
you save and restore all registers that are clobbered in the assembly code.

16

4.3 Using assembly filesin Visual C++

This chapter tells you how to use assembly filesin aVisua C++ project.

First we write a C source file, which calls the assembly function:

#i ncl ude <stdi o. h>

/* Return a + b
* This function is in func.asm
*/
extern int assenbly function(int a, int b);

i nt mai n(voi d)

{
printf("14 + 21 = %\ n", assenbly_function(14, 21));

return O;

}

Then we write an assembly file that contains the function we are interested in:

. 586 ; 32-bits (with Pentiuminstructions)
. MODEL fl at ; Flat menory nodel (no-segnentation)

EXTERN _printf:NEAR ; printf is an external function
assenbly function is a public function

; Note that all C functions begins with an underscore
PUBLI C _assnebly_function

. DATA ; Begin data segnent

;o printf() string (null term nated)
printf_nsg DB ' Argunents: %l and %d\n', O

. CODE ; Begin code segnent
; assenbly _function in C
; int assenbly function(int a, int b)

P Ao

; int ¢c =a+ b;

; printf("Argunents: % and %\ n", a, b);
; return c;

;b

: The = directive does the sane as #define in C

; Location of argunments on the stack frane
_argl = 8 ; EBP + 8 = argl (a)
_arg2 = 12 ; EBP + 12 = arg2 (b)

; Location of |ocal variables

17

_locl

= -4 ; EBP - 4 = |ocal variable (c)

_assenbly_functi on:

push ebp ; Save ol d base pointer
nov ebp, esp ; Point EBP to top of stack
sub esp, 4 ; Make space on stack for local variable

nov

eax, SDWORD PTR _argl[ebp] ; Move argunment 1 into eax

; Note that we specify that we are interested
; in noving 4 bytes (SDWORD PTR)

nov
nov
add

ebx, SDWORD PTR _arg2[ebp] ; Mowve argunment 2 into ebx
ecx, eax ; ecx = eax
ecx, ebx ; ecx = eax + ebx

; Save caller saved registers

; Note that we don't need to save eax and ebx, because they don't
; nheed to be preserved

push ecx

; Push printf argunents

push ebx ; Push argunent 3

push eax ; Push argunent 2

push OFFSET printf_mnsg ; Push address of string (argunent 0)
call _printf
add esp, 12 ; Pop argunents
; Restore caller saved registers
pop ecx
nov eax, ecx ; Store return value in eax
nov esp, ebp ; ESP points to top of stack frane
pop ebp ; Restore EBP register
ret ; Return to caller
; End of source file

end

Then we need to assembl e this file when building the project:

PO

o

Insert fileinto project

Right-click on the filename in the FileView, and choose Settings.
Select the Custom Build tab.

In commands you write:

c:\masm611\bin\ml /c /coff /Zd $(InputName).asm

And in Outputs you write:

$(InputName).obj

Compile and run as usual.

18

4.4 Under standing Assembly Listings

One way to learn assembly programming is to study assembly listings produced by the
compiler. In this chapter | have commented the assembly listing produced by the
Microsoft compiler for the C program given in the next page.

C code:

#i ncl ude <stdio. h>
#i ncl ude "error_wapper.h"

/* Just open the file given as the first command |ine
* argunent.
*/
int main(int argc, char *argv[])
{
FI LE *f;

/* First argunent is the name of the executable file */
set prognane(argv[0]);

/* Second argunent is the file to be opened */
if (argc < 2)
eprintf("Usage: error_wrapper filenane");

f = fopen(argv[1l], "r");
if (f == NULL)

eprintf("can't open file: %", argv[1]);
fclose(f);

printf("File opened and cl osed wi thout errors\n");

return O;

}

Assembly output (my comments begins with three semicolons):

77, Name of the c file ?
TITLE H\d241_a00\assenbly_exanpl e\error_w apper_test.c

;.; 386 processor node (P: enable the instructions available only at
hi gher privilege |evels)
. 386P

;. This file contains assenbler macros and is included by the files
7, created with the -FA conpiler switch to be assenbl ed by MASM
include listing.inc

;o i f MAMSM version > 5.1 then use flat nenory nodel
;.; (no segnentation, code and data in the same segnent)
;7 We use FLAT in Wndows 2000

if @ersion gt 510

. model FLAT

19

;.. lgnore this

el se

_TEXT SEGMVENT PARA USE32 PUBLI C ' CODE'
_TEXT ENDS

_DATA SEGMVENT DWORD USE32 PUBLI C ' DATA
_DATA ENDS

CONST SEGQVENT DWORD USE32 PUBLI C ' CONST
CONST ENDS

_BSS SEGVENT DWORD USE32 PUBLI C ' BSS
_BSS ENDS

$$SYMBOLS SEGVENT BYTE USE32 ' DEBSYM
$$SYMBOLS ENDS

$$TYPES SEGMVENT BYTE USE32 ' DEBTYP'
$$TYPES ENDS
_TLS SEGMVENT DWORD USE32 PUBLIC ' TLS
_TLS ENDS
; COVDAT ??_C@ 0BO@HHKP@Jsage?3?5error _wr apper ?5f i | enane?$AA@
CONST SEGQVENT DWORD USE32 PUBLIC ' CONST'
CONST ENDS
; COVDAT ??7_C@ 01LHO@ ?$AA@
CONST SEQVENT DWORD USE32 PUBLIC ' CONST'
CONST ENDS
; COVDAT ??_C@ OBE@CM@an?8t ?50pen?5fi | e?3?5?$CFs?$AA@
CONST SEQVENT DWORD USE32 PUBLIC ' CONST'
CONST ENDS
; COVDAT ??_C@ OCH@BNAK@i | e?50pened?5and?5cl osed?5wi t hout ?5e@
CONST SEGQVENT DWORD USE32 PUBLIC ' CONST'
CONST ENDS
; COVDAT _nmi n
_TEXT SEGVENT PARA USE32 PUBLI C ' CODE
_TEXT ENDS
FLAT GROUP _DATA, CONST, _BSS
ASSUME CS: FLAT, DS: FLAT, SS: FLAT
endi f

;7; Main is a public function (other nodules can call it)
PUBLIC _main

;;; These are static string |abels.

;. Static strings nmust be public so that other nopdul es can use them
;55 (the nmodule which printf() is in must access string ABC when we
;. use: printf("ABC');

PUBLI C ??_C@ 0BO@HHKP@Jsage?3?5err or _w apper ?5fi | enane?$AA@; “string'
PUBLI C ?7?7_C@ 01LHO@ ?$AA@ ; string'

PUBLI C ??_C@ OBE@CM@an?8t ?50pen?5fi | e?3?5?3CFs?$AA@ ; string

PUBLI C ?7?7_C@ OCH@NAK@i | e?50pened?5and?5cl osed?5wi t hout ?5e@; ~“string'

i, These are external functions
EXTRN _fcl ose: NEAR

EXTRN _fopen: NEAR

EXTRN _printf: NEAR

EXTRN _eprintf: NEAR

EXTRN _set prognane: NEAR

;o5 1 think this one is a debugging function used to check that the
;,, stack frame is restored correctly.

20

EXTRN _ chkesp: NEAR

; COVDAT ??_C@ 0BO@HHKP@Jsage?3?5error _wr apper ?5f i | enanme?$AA@
; File H\d241_a00\ assenbl y_exanpl e\ error_w apper _test.c

;:; .CONST is used to define constant data that nust be stored in

;. menory.
7, SEGVENT We define data in segments
7o ??2_C.. | think is a |abel

;;, DB: byte aligned
;y, '"Usage...DB...filename, OOH: Data (a null terninated string)
7y, 'string': class, used to organize segnents
7, ENDS: end of this segnent
CONST SEGMENT
??_C@ 0BO@GHHKP@Jsage?3?5err or _wr apper ?5fi | enane?$AA@ DB ' Usage:
error_wa'
DB "pper filenane', OOH ; string'
CONST ENDS

i, More static string definitions
; COVDAT ?7?7_C@ 01LHO@ ?$AA@
CONST SEGMVENT
??_C@O0l1LHO@ ?$AA@DB 'r', OOH ; “string'
CONST ENDS
; COVDAT ?7?_C@ OBE@XCM@an?8t ?50pen?5fi | e?3?5?$CFs?$AA@
CONST SEGMVENT
??_C@ OBE@CM@ an?8t ?50pen?5fi | e?3?5?$CFs?$AA@DB 'can' 't open file:
%', O0OH; “string
CONST ENDS
; COVDAT ??_C@ OCH@BNAK@i | e?50pened?5and?5cl osed?5wi t hout ?5e@
CONST SEGMENT
??_C@ OCH@BNAK@i | e?50pened?5and?5cl osed?5wi t hout ?5e@DB ' Fi |l e opened
and'
DB ' closed without errors', OaH, OOH ; string'
CONST ENDS

; COVDAT _mai n
7, Start of text (code) segment
_TEXT SEGMENT

;;; To access argunment argc in the stack frame we can add _argc$ to the
;;; address EBP points to.

i, At menory location [EBP] + 4 is the return address of the function
i, that called this function

;7 At nenory location [EBP] is the old stack frame pointer.

argc$ = 8

:argv$ =12
;55 If we had a third argument it would be at nenory |ocation [EBP] +
iy 16

77, To access local variable f in the stack frame we can add _f$ to the
;;, address EBP points to.

_f$=-4

7, If we had nore local variables they would be at nenory | ocation:

;. [EBP] - 8, [EBP] - 12... (Note that even char's use 4 bytes, we

75, cannot push one byte on the stack)

21

Main is a public procedure, and the code starts here.

_main PROC NEAR ; COVDAT
;; C code
8 c |

13
14
15

Epi | ogue code

Save the old stack frane pointer

push ebp
Establish a new stack frame

nmov ebp, esp
Create roomfor local variables. | don't know why it subtracts 68
bytes when there is only one | ocal variable. Perfornmance?

sub esp, 68 ; 00000044H
Save cal l ee saved registers used in this function.

push ebx

push esi

push edi

I think the follow ng code "clears" the stack area reserved for
| ocal vari abl es.

Comput e the effective address of the old stack frane pointer and
store it in EDI.

| ea edi, DWORD PTR [ebp- 68]
VW want to repeat the strings instruction (stosd) 17 tines.

nov ecx, 17 ; 00000011H
I have no idea why the value ccccccccH is used
nmov eax, -858993460 ; ccccccecH

for (i =0; i <17, i++)
Store EAX at address (EDI + 4 * i)
rep stosd

FI LE *f;

/* First argument is the nane of the executable file */
set prognane(argv[0]);
Move argunent argv into eax
nov eax, DWORD PTR _ar gv$[ebp]
Move argv[0] into ecx
nmov ecx, DWORD PTR [eax]
Push the first (and only) argunent...
push ecx
...and call the function
cal | _set prognane
Pop the argunent.
add esp, 4

/* Second argunent is the file to be opened */
if (argc < 2)

In 1A-32 on of the operands can be in nmenory

22

cnp DWORD PTR _argc$[ebp], 2
;;; |f 1st operand >= 2nd operand then goto | abel $L363
j ge SHORT $L363

; 16 : eprintf("Usage: error_w apper filenane");

;s Push static string as 1st argunent
push OFFSET

FLAT: ??_C@ O0BO@HHKP@Jsage?3?5er r or _wr apper ?5fi | enane?$AA@; “string'
77, And call eprintf
cal | _eprintf
71, Pop argunent
add esp, 4
;;; Label to jump to, if argc >= 2
$L363:
;17 :
;18 : f = fopen(argv[1l], "r");
;. Push second argunent, the static string "r"
push OFFSET FLAT: ??_C@ 01LHO@ ?$AA@ ; string
nov edx, DWORD PTR _ar gv$[ebp]
;;; Move argv[l] into eax..
nmov eax, DWORD PTR [edx+4]
;7 ...and push it as the second argunent...
push eax
;7 ...to function fopen, which is called
cal | _fopen

;. Pop the argunents
add esp, 8
i, Save the reurn value on the stack

;7 Wien conpiled with debugging on every tinme a local variable is

éhanged,
;;, is stored on the stack
mov DWORD PTR _f$[ebp], eax
;19 : if (f == NULL)
cnp DWORD PTR _f$[ebp], O
j ne SHORT $L367
;20 : eprintf("can't open file: %", argv[l1]);
;. Push argv[1l] (the second argunent)
nov ecx, DWORD PTR _ar gv$[ebp]
nov edx, DWORD PTR [ecx+4]
push edx

;55 And push the static string as the first argunent
push OFFSET

FLAT: ??_C@ OBE@XCM@an?8t ?50pen?5fil e?3?5?$CFs?$AA@ ; “string'

cal | _eprintf
i, Pop argunents
add esp, 8

vy Junp to this label if (f !'= NULL)

23

$L367:

;21 : fclose(f);
;. Move local variable f into eax, push it, call fclose, and pop the
;;; argument.
nov eax, DWORD PTR _f $[ebp]
push eax
cal l _fclose
add esp, 4
;22 :
;23 : printf("File opened and cl osed without errors\n");

push OFFSET
FLAT: ??_C@ OCH@BNAK@i | e?50pened?5and?5cl osed?5wi t hout ?5e@; “string'

cal | _printf
add esp, 4
;24 :
;25 : return O;

i, Return value is stored in eax

;. Xor eax, eaxc, is a fast way to store zero in eax
xor eax, eax

; 26 D}

.., Epilouge code

77, Restore saved calle save registers

pop edi

pop esi

pop ebx
.., Pop the stack frame

add esp, 68 ; 00000044H
;7 | think this is a test to check that the old stack frane is
;. restored

cnp ebp, esp

cal l __chkesp

;.. Restore the old stack frane.

nmov esp, ebp

;;, Pop old stack frame pointer
pop ebp

77, Return without poping any registers.
ret 0

;; End of procedure main

_main ENDP
;;, End of code segnent
_TEXT ENDS

;; End of the source code
END

5 Examples

This chapter contains a lot of examples. Y ou should read and understand them all.

5.1 Arithmetic Instructions
C program:

f=(g+h)-(@+j)

Assembly:

; W assune that f, g, h, i and j are assigned to registers EAX, EBX,
ECX, EDX and ESI

nmov EDI, EBX ; ED =g

add EDI, ECX ; EDI = g + h

mov EAX, EDI ; EAX = (g + h)

nmov EDI, EDX ; EDI =i

add EDI, ESI ; ED =i +]

sub EAX, EDI ; EAX = (g + h) - (i +])

5.2 Data Transfer (mov instruction)

. DATA
a_letter DB 'c' ; Allocate one byte of nmenory, initialize
it to'c'.
Array of 20 integers initialized to zero
Array of 25 quadwords (64 bits),

uninitialized

array DD 20 DUP (0)
gwa SQADRD 25 DUP (?)

nmov EAX, EBX ; EAX = EBX

mov EAX, 132 ; EAX = 132

mov a_letter, BYTE PTR EAX ; nenory[a_letter] = AL (8 |Isb of EAX)

mov EAX, [ESP] ; EAX = nenory[ESP]

mov ECX, OFFSET array ; ECX = &(array[0])

mov ECX, array ; ECX = array[0]

mov EAX, array[ESI *4] i EAX = EAX + nenory[OFFSET table +
; ESI * 4]

nmov EAX, [EBX+ESI] ; EAX = menory[EBX + (ESI * 1) + 0]

nmov EAX, [EBX+ESI *4+2] ; EAX = nmenory[EBX + (ESI * 4) + 2]

mov ECX, OFFSET array ; ECX = &(array[0])

mov [ECX], SQAORD PTR 25 menory[ECX] = array[0] = 25

25

5.2 Jumps

5.2.1 Unconditional Jump

Infinite loop:

forever:
jmp forever

5.2.2 Conditional Jumps

If then else
if (a<0) {
b = -5;
}
else if (a>0) {
b = 5;
el se {
b = 0;
}
; Assune that: a is in EAX, and that b is assigned to EBX
cnmp EAX, O
jge larger ; if (a >= 0) goto |arger;
smal | er: ;a<0
nmov EBX, -5 ;7 b =-5
jmp exit _if
| arger:
cnp EAX, O
j1e equal ; if (a ==20) goto (we know that a >= 0, so it
; cannot be < 0)
mov EBX, 5 b =5
jmp exit_if
equal
mov EBX, O cb=0
exit_if: ; End of if then else
L oop
int i, vector[25];

for (i =0; i < 25; i++)
vector[i] = O;

Assembly:

; vector[] is allocated nenory on the stack

_vector = -112 ; Start address of vector is EBP - 112
; Remenber that the stack grows downward, and that |oca
; variables are bel ow the frane pointer.

; You should al so note that:

; vector[0] menory[ebp + _vector]

; vector[13] menory[ebp + _vector + 13*4]

start _| oop:

mov ECX, O ;1 =0
jnp init_loop
| oop:
add ECX, 1 ;o0
init_|oop:
cmp ECX, 25
jge exit loop ; if (i >= 25) goto exit_loop
body:
; menory[ebp + _vector + ecx * 4 =0
; DWORD PTR because we want to nove a double word (renenber
; that vector is an array of int's)
mov DWORD PTR _vector[ebp + ecx * 4], O
end_body:
jmp 1 oop
exit_| oop

5.3 Function calls

C code:
void *emal | oc(size_t size)
{
void *rp;
if (((rp = malloc(size))) == NULL) {
printf("Malloc error\n");
exit(l);
}
return rp;
}
Assembly:

PUBLIC _emall oc

. DATA

27

mal | oc_string DB 'Malloc error', 13,0

_size$ = 8

_rp$ = -4

_emal | oc:
push
nov
sub

nov
push
cal l
add

cnp

jne
error:

push

cal |
add

push
cal l

; Note that we never

no_error:
nov
nov
pop
ret

Al l ocate nenory for a

null terminated string
menory[ebp + _size$] = argunent
nmenory[ebp + _rp$] = local variable
ebp Save ol d stack pointer
ebp, esp Create a new stack frane
esp, 4 Al l ocate nenmory for |oca

eax, _size$[ebp]

eax

_mal | oc

esp, 4 ;
_rp$[ebp], eax ;
eax, O ;
no_error ;

OFFSET mal | oc_string

_printf
esp, 4

1
_exit

eax, _rp$[ebp] ;
esp, ebp ;
ebp

vari abel s

Move argument 'size' to EAX

Push mal | oc() argunent

Call mall oc

Pop argunents

Save return val ue on the stack

Return value is in EAX (is

conmpared to O = NULL)

if (return value != NULL) goto
no_error

First argunent to printf() is
the address of the string

Call printf

Pop ar gunent

First argunment to exit()
Call exit

return fromexit()

Move return value into eax
Restore stack pointer
Restore ol d stack frane
Return to caller

5.4 The most useful 1A-32 I nstructions

\Category |I nstruction \Example |M eaning
Arithmetic add ladd EAX, EBX [EAX = EAX + EBX
| 'subtract 'sub EAX, EBX [EAX = EAX - EBX
| ladd immediate ladd EAX, 200 [EAX = EAX + 200
| ladd unsignedt add EAX,EBX |EAX = EAX +EBX
‘ add immediate Dot exig

unsigned
‘ multiply imul EBX Eg))é:EAX = BAX®
| | imul ECX,EBX |ECX = ECX * EBX
|

imul ECX, EBX, 200 |[ECX = EBX * 200

28

imul ECX, 200

ECX = ECX * 200

. = *
multiply unsigned mul ECX Egi((EAX = EAX
EAX = EDX:EAX/
divide idiv ECX ECX, EDX =
EDX:EAX % ECX
EAX = EDX:EAX/
divide unsinged div ECX ECX, EDX = EDX:
EAX % ECX
and and EAX, EBX [EAX = EAX & EBX
or lor EAX, EBX [EAX = EAX | EBX
Logical shiftleftlogical sl EAX, EBX E’é))é =BAX <<
shiftright logical 'shr EAX, EBX oo TEAR>
xor xor EAX, EBX [EAX = EAX " EBX
Imov? mov EAX, EBX |EAX = EBX
| Imov EAX, 200 [EAX = 200
EAX =
mov EAX, [ESP] memory[ESP]
EAX =
mov EAX, label memory[label]
QfgyEAX, OFFSET EAX = & (array[0])
AX = memory[
Datatransfer mov EAX,
3 tabl e[ESI* 4] 9Z|]:SET table + ESI
3 mov E AX, E AX = memory[E
[EBX+ESI*4+2] ; [BX + (ESI * 4) + 2]
ESP=ESP- 4;
push push EAX memory[ESP] =
EAX
EAX =
pop pop EAX memory[ESP|; ESP
=ESP+4
Compare compare cmp EAX, EBX E(')A;]i(rt;l Elig(s Set
Conditional jumps |jump if equal4 ielabel \Ilzlllgngp(tzolzl)aiiel S(;‘ Zero

29

Jump to label if ZF =

jump if zero* jz label 1
jump if not equal® jne label g”mp tolabel if ZF =
jump if not zero? jnz label gump to label it ZF =
jumpif CX iszero |jcxz label gump to label if CX =
ump if carr o Jump to label if
ki 4 : Carry Flag (CF) is set
jumpif notcarry finc gump to label if CF =
Jump to label if
jump if overflow jo label Overflow Flag (OF)
isset
jumpif not overlow |jno label .(])ump to label it OF =
Jump to label if Sign
jumpissign jslabel Flag (SF) is set
(negative sign)
. . . : Jump to label if SF=
jump is not sign jns label O(pgstivesign)
jump imp label [Jump to label
Unconditiona jum -
Jump jump register imp EAX \IJET)I? to addressin
Instruction call call call function_label Ejuri‘ti(E)LP Iﬁarl‘)‘lll ump to
Instruction return ~ |ret ret znogjrl?trrl:pr)rl gnijflras,
|increment \inc EAX |EAX =EAX +1
'decrement dec EAX [EAX = EAX - 1
|no operation \nop |Do nothing
Other
EAX & EBX. Set
et test EAX, EBX control flags.
exchange values xchg EAX, EBX EEF;(: Eé‘))((=Et'rb\n)p§ =

1 The processor don't careif it isasigned value, it evaluates the result for both values.

30

2 Note that IA-32 is not aload-store architecture; most of the instructions can have one of
the operands in memory.

3 Only ESI and EDI can be used as the displacement register.

4 Use cmp or test to set control flags (ZF, CF, OF, SF, PF).

6 References

Sivarama, P. Dandamudi, Introduction To Assembly Language Programming; From 8086
to Pentium Processor, Springer 1998

Patterson, David A. / Hennesy, John L., Computer Organization & Design The Hardware
| Software Interface, Second Edition, Morgan Kaufmann Publishers 1998

Intel Architecture Software Developers Manual Volume 1, 2 and 3, Intel
Microsoft MASM Programmers Guide, Microsoft
Shanley, Paul, Protected Mode Software Architecture, Mindshare Inc 1996

Li, Kay, A Guide to Programming Pentium/Pentium Pro Processors, Princeton
University

31

