Simplify as much as possible.

1. $(A B+C)\left(A B+C^{\prime}\right)$
$=A B\left(C+C^{\prime}\right)$ (distributive law (16))
$=A B(1)$ (identity 7)
$=A B$ (identity 2$)$
$\mathrm{A} \backslash \& \mathrm{~B}$
2. $X^{\prime} W+X W^{\prime}+X W+X^{\prime} W^{\prime}$
$=X^{\prime} W^{\prime}+X^{\prime} W+X W^{\prime}+X W$ (commutative law (10))
$=X^{\prime}\left(W^{\prime}+W\right)+X\left(W^{\prime}+W\right)$ (distributive law)
$=\left(X^{\prime}+X\right)\left(W^{\prime}+W\right)$ (distributive law)
$=1 \cdot 1$ (identity 7)
$=1$ (identity 3)
3. $p q r+r p$
$=p(q r+r)$ (distributive)
$=p(q+1) r$ (distributive)
$=p r$ (identity 3$)$
p
\& r
4. $\left(y^{\prime}+z^{\prime}\right) x y z$
$=x y y^{\prime} z+x y z z^{\prime}$ (distributive)
$=0+0=0$ (identity 8)
5. $(C+D X)(C+E X)$
$=C+(D X)(E X)$ (distributive law (15))
$=C+D E X$ (identity 6$)$
C | (D
\& E
\& X)
6. $T\left(L^{\prime}+V\right)+T V^{\prime}$
$=T\left(L^{\prime}+V+V^{\prime}\right)$ (distributive law)
$=T\left(L^{\prime}+1\right)=T($ identities 7 and 3$)$
7. $f g \oplus 1$
$=0 f g+1(f g)^{\prime}$ (definition)
$=f^{\prime}+g^{\prime}$ (DeMorgan's law)
$\sim_{f} \mid{ }^{\sim} g$
8. $(m \oplus n) \oplus\left(m^{\prime} \oplus n\right)$
$=\left(m \oplus m^{\prime}\right) \oplus(n \oplus n)$ (XOR is commutative \& associative)
$=1 \oplus 0=1$ (identities)
9. $(u w \oplus(t+u))^{\prime}$
$=\left((u w)^{\prime}(t+u)+u w(t+u)^{\prime}\right)^{\prime}$ (definition)
$=\left(\left(u^{\prime}+w^{\prime}\right)(t+u)+u u^{\prime} w t\right)^{\prime}$ (DeMorgan's)
$=\left(u^{\prime}+w^{\prime}\right)^{\prime}+(t+u)^{\prime}$ (identities \& DeMorgan's)
$=u w+t^{\prime} u^{\prime}$ (DeMorgan's once again)
u
\& w $\mid{ }^{\sim} \mathrm{t}$
\& ${ }^{\sim} \mathrm{u}$
10. $(x y+z)^{\prime}\left(z\left(x^{\prime}+y^{\prime}\right)\right)$
$=z^{\prime}(x y)^{\prime} z\left(x^{\prime}+y^{\prime}\right)=0$ (DeMorgan's and identity)
11. $[(x+a)(x+b)(x+c)(x+d)]^{\prime}$
$=(x+a b c d)^{\prime}=x^{\prime}(a b c d)^{\prime}$ (Distributive \& DeMorgan's)
${ }^{\mathrm{x}}$
\& ~ (a
\& b
\& c
\& d)

Prove or Disprove the following expressions

1. $(X \oplus Y)^{\prime}=\left(X^{\prime} \oplus Y\right)$
$X^{\prime} \oplus Y=X^{\prime} Y^{\prime}+X Y=\left((X+Y)\left(X^{\prime}+Y^{\prime}\right)\right)^{\prime}=(X \oplus Y)^{\prime}$
True
2. $\left(A^{\prime} \oplus T^{\prime}\right)=(A \oplus T)$
$A^{\prime} \oplus T^{\prime}=A^{\prime \prime} T^{\prime}+A^{\prime} T^{\prime \prime}=A T^{\prime}+A^{\prime} T=A \oplus T$
True
3. $\left[a^{\prime}\left(b+c^{\prime}\right)\right]^{\prime}+b^{\prime} c=a$
$\left[a^{\prime}\left(b+c^{\prime}\right)\right]^{\prime}+b^{\prime} c=a+b^{\prime} c+b^{\prime} c=a+b^{\prime} c$
False: let $a=0, b=0, c=1$
4. $w v x^{\prime}+w v^{\prime} x+w^{\prime} v x^{\prime}+w^{\prime} v^{\prime} x=w \oplus v \oplus x$
$w v x^{\prime}+w v^{\prime} x+w^{\prime} v x^{\prime}+w^{\prime} v^{\prime} x=w\left(v x^{\prime}+v^{\prime} x\right)+w^{\prime}\left(v x^{\prime}+v^{\prime} x\right)=v \oplus x$
False: let $w=v=x=1$
5. $(A+D)(A+B+D)=(A+B)$
$(A+D)(A+B+D)=(A+D)((A+D)+B)=A+D$
False: let $A=0, B=1, D=0$
6. $\left(M^{\prime} N\right) \oplus\left(M N^{\prime}\right)=M \oplus N$
$M^{\prime} N \oplus M N^{\prime}=M^{\prime} N\left(M^{\prime}+N\right)+M N^{\prime}\left(M+N^{\prime}\right)=M^{\prime} N+M N^{\prime}$
True
7. $(x+a)(y+b)(x+c)(y+a)(x+b)(y+c)=(x y+a b c)$
$(x+a)(x+b)(x+c)(y+a)(y+b)(y+c)=(x+a b c)(y+a b c)=x y+a b c$ True
8. $(K \oplus L \oplus M \oplus N \oplus P)^{\prime}=\left(K^{\prime} \oplus L^{\prime} \oplus M^{\prime} \oplus N^{\prime} \oplus P^{\prime}\right)$
$((K \oplus L) \oplus(M \oplus N) \oplus P)^{\prime}=\left(K^{\prime} \oplus L^{\prime} \oplus M^{\prime} \oplus N^{\prime} \oplus P\right)^{\prime}=K^{\prime} \oplus L^{\prime} \oplus M^{\prime} \oplus N^{\prime} \oplus P^{\prime}$ True
