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Review from Last Time

* Interest in multiple-issue because wanted to improve
performance without affecting uniprocessor
programming model

» Taking advantage of ILP is conceptually simple, but
design problems are amazingly complex in practice

« Conservative in ideas, just faster clock and bigger

* Processors of last 5 years (Pentium 4, IBM Power 5,
AMD Opteron) have the same basic structure and
similar sustained issue rates (3 to 4 instructions per
clock) as the 1st dynamically scheduled, multiple-
issue processors announced in 1995

— Clocks 10 to 20X faster, caches 4 to 8X bigger, 2 to 4X as many
renaming registers, and 2X as many load-store units
= performance 8 to 16X

» Peak v. delivered performance gap increasing
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Outline Limits to ILP
* Review » Conflicting studies of amount

» Limits to ILP (another perspective)

* Administrivia

* Thread Level Parallelism

* Multithreading

* Simultaneous Multithreading

* Power 4 vs. Power 5

* Head to Head: VLIW vs. Superscalar vs. SMT
« Commentary

e Conclusion
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— Benchmarks (vectorized Fortran FP vs. integer C programs)
— Hardware sophistication
— Compiler sophistication

 How much ILP is available using existing
mechanisms with increasing HW budgets?

* Do we need to invent new HW/SW
mechanisms to keep on processor
performance curve?

— Intel MMX, SSE (Streaming SIMD Extensions): 64 bit ints
— Intel SSE2: 128 bit, including 2 64-bit FI. Pt. per clock
— Motorola AltaVec: 128 bit ints and FPs

— Supersparc Multimedia ops, etc.
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Overcoming Limits Limits to ILP

« Advances in compiler technology + Initial HW Model here; MIPS compilers.
significantly new and different hardware Assumptions for ideal/perfect machine to start:
techniqgues may be able to overcome 1. Register renaming — infinite virtual registers
limitations assumed in studies => all register WAW & WAR hazards are avoided

« However, unlikely such advances when 2. Branch prediction — perfect; no mispredictions
coupled with realistic hardware will 3. Jump prediction — all jJumps perfectly predicted
overcome these limits in near future (returns, case statements)

2 & 3= no control dependencies; perfect speculation
& an unbounded buffer of instructions available

4. Memory-address alias analysis —addresses known
& aload can be moved before a store provided
addresses not equal; 1&4 eliminates all but RAW

Also: perfect caches; 1 cycle latency for all instructions

(FP *,/); unlimited instructions issued/clock cycle;
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Limits to ILP HW Model comparison Upper Limit to ILP: Ideal Machine

(Figure 3.1)
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Limits to ILP HW Model comparison

New Model [Model |Power5

Instructions | Infinite Infinite 4
Issued per
clock

Instruction Infinite, 2K, 512, |Infinite 200
Window Size | 128, 32

Renaming Infinite Infinite 48 integer +

Registers 40 FI. Pt.

Branch Perfect Perfect 2% to 6%

Prediction misprediction
(Tournament Branch
Predictor)

Cache Perfect Perfect 64KIl, 32KD, 1.92MB
L2,36 MB L3

Memory Perfect Perfect ?7?

Alias

More Realistic HW: Window Impact

Figure 3.2
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Limits to ILP HW Model comparison

New Model [Model |Power 5
Instructions |64 Infinite 4
Issued per
clock
Instruction 2048 Infinite 200
Window Size
Renaming Infinite Infinite 48 integer +
Registers 40 FI. Pt.
Branch Perfect vs. 8K Perfect 2% to 6%
Prediction Tournament vs. misprediction
512 2-bit vs. (Tournament Branch
profile vs. none Predictor)
Cache Perfect Perfect 64KIl, 32KD, 1.92MB
L2,36 MB L3
Memory Perfect Perfect ??
Alias

More Realistic HW: Branch Impact

Figure 3.3
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Misprediction Rates

Limits to ILP HW Model comparison
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New Model |Model |Power5
Instructions |64 Infinite 4
Issued per
clock
Instruction 2048 Infinite 200
Window Size
Renaming Infinite v. 256, Infinite 48 integer +
Registers 128, 64, 32, none 40 FI. Pt.
Branch 8K 2-bit Perfect Tournament Branch
Prediction Predictor
Cache Perfect Perfect 64KI, 32KD, 1.92MB
L2,36 MB L3

Memory Perfect Perfect Perfect
Alias
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More Realistic HW:
Renaming Register Impact (N int + N fp)

Figure 3.5
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Limits to ILP HW Model comparison

New Model |Model |Power5
Instructions |64 Infinite 4
Issued per
clock
Instruction 2048 Infinite 200
Window Size
Renaming 256 Int + 256 FP | Infinite 48 integer +
Registers 40 FI. Pt.
Branch 8K 2-bit Perfect Tournament
Prediction
Cache Perfect Perfect 64KIl, 32KD, 1.92MB
L2,36 MB L3
Memory Perfect v. Stack | Perfect Perfect
Alias V. Inspect v.
none
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More Realistic HW:
Memory Address Alias Impact

Figure 3.6
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heap conflicts ssem.

Limits to ILP HW Model comparison

New Model [Model |Power5
Instructions |64 (no Infinite 4
Issued per restrictions)
clock
Instruction Infinite vs. 256, | Infinite 200
Window Size | 128, 64, 32
Renaming 64 Int + 64 FP Infinite 48 integer +
Registers 40 FI. Pt.
Branch 1K 2-bit Perfect Tournament
Prediction
Cache Perfect Perfect 64KIl, 32KD, 1.92MB
L2,36 MB L3
Memory HW Perfect Perfect
Alias disambiguation
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Realistic HW: Window Impact

(Figure-3-7)
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CS 252 Administrivia

1 Page project writeups Due LAST Sunday

* 1st Homework Assignment due Friday
— Problems online

» Also Friday Reading Assignment: “Simultaneous
Multithreading: A Platform for Next-generation
Processors,” Susan J. Eggers et al, IEEE Micro,
1997

— Try 30 minute discussion after one hour lecture on Monday

— Send email to TA by Friday, will be posted on Saturday, review

before discussion on Monday

* What assumption made about computer
organization before add SMT? What performance
advantages claimed? For what workloads?

— How compare to Wall’s ILP limit claims?
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Outline

* Thread Level Parallelism

* Multithreading

* Simultaneous Multithreading

* Power 4 vs. Power 5

* Head to Head: VLIW vs. Superscalar vs. SMT
« Commentary

» Conclusion
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How to Exceed ILP Limits of this study?

* These are not laws of physics; just practical limits
for today, and perhaps overcome via research

» Compiler and ISA advances could change results

* WAR and WAW hazards through memory:
eliminated WAW and WAR hazards through
register renaming, but not in memory usage

— Can get conflicts via allocation of stack frames as a called
procedure reuses the memory addresses of a previous frame
on the stack
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HW v. SW to increase ILP

 Memory disambiguation: HW best

» Speculation:

—HW best when dynamic branch prediction
better than compile time prediction

— Exceptions easier for HW

—HW doesn’t need bookkeeping code or
compensation code

—Very complicated to get right

e Scheduling: SW can look ahead to
schedule better

« Compiler independence: does not require
new compiler, recompilation to run well

2/14/2006 CS252 S06 Lec9 Limits and SMT 23

Performance beyond single thread ILP

* There can be much higher natural
parallelism in some applications
(e.g., Database or Scientific codes)

» Explicit Thread Level Parallelism or Data
Level Parallelism

* Thread: process with own instructions and
data

— thread may be a process part of a parallel program of
multiple processes, or it may be an independent program

— Each thread has all the state (instructions, data, PC,
register state, and so on) necessary to allow it to execute

 Data Level Parallelism: Perform identical
operations on data, and lots of data
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Thread Level Parallelism (TLP)

* |ILP exploits implicit parallel operations
within a loop or straight-line code
segment

« TLP explicitly represented by the use of
multiple threads of execution that are
inherently parallel

« Goal: Use multiple instruction streams to
improve
1. Throughput of computers that run many
programs

2. Execution time of multi-threaded programs

e TLP could be more cost-effective to
exploit than ILP

2/14/2006 CS252 S06 Lec9 Limits and SMT 25

New Approach: Mulithreaded Execution

Multithreading: multiple threads to share the
functional units of 1 processor via
overlapping

— processor must duplicate independent state of each thread
e.g., a separate copy of register file, a separate PC, and for
running independent programs, a separate page table

— memory shared through the virtual memory mechanisms,
which already support multiple processes

— HW for fast thread switch; much faster than full process
switch = 100s to 1000s of clocks

* When switch?

— Alternate instruction per thread (fine grain)

— When athread is stalled, perhaps for a cache miss, another
thread can be executed (coarse grain)
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Fine-Grained Multithreading

» Switches between threads on each instruction,
causing the execution of multiples threads to be
interleaved

» Usually done in a round-robin fashion, skipping
any stalled threads

* CPU must be able to switch threads every clock

* Advantage is it can hide both short and long
stalls, since instructions from other threads
executed when one thread stalls

» Disadvantage is it slows down execution of
individual threads, since a thread ready to
execute without stalls will be delayed by
instructions from other threads

» Used on Sun’s Niagara (will see later)
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Course-Grained Multithreading

» Switches threads only on costly stalls, such as L2
cache misses
* Advantages
— Relieves need to have very fast thread-switching

— Doesn’t slow down thread, since instructions from other
tfgrtlalads issued only when the thread encounters a costly
sta

» Disadvantage is hard to overcome throughput
Iosstes from shorter stalls, due to pipeline start-up
costs

— Since CPU issues instructions from 1 thread, when a stall
occurs, the pipeline must be emptied or frozen

— New thread must fill pipeline before instructions can
complete

» Because of this start-up overhead, coarse-grained
multithreading is better for r_educm_ﬂ penaltly( of
high cost stalls, where pipeline refill << stall time

* Used in IBM AS/400
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For most apps, most execution units lie idle &
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Do both ILP and TLP?

 TLP and ILP exploit two different kinds of
parallel structure in a program

» Could a processor oriented at ILP to
exploit TLP?
— functional units are often idle in data path designed for
ILP because of either stalls or dependences in the code
e Could the TLP be used as a source of
independent instructions that might keep
the processor busy during stalls?

* Could TLP be used to employ the
functional units that would otherwise lie
idle when insufficient ILP exists?
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Simultaneous Multithreading ...

One thread, 8 units
Cycle M M FX FX FP FPBRCC

1

2

3

Two threads, 8 units
Cycle M M FX FX FP FPBRCC

M = Load/Store, FX = Fixed Point, FP = Floating Point, BR = Branch, CC = Condition Codes

Simultaneous Multithreading (SMT)

* Simultaneous multithreading (SMT): insight that
dynamically scheduled processor already has
many HW mechanisms to support multithreading

— Large set of virtual registers that can be used to hold the
register sets of independent threads

— Register renaming provides unique register identifiers, so
instructions from multiple threads can be mixed in datapath
without confusing sources and destinations across threads

— Out-of-order completion allows the threads to execute out of
order, and get better utilization of the HW
» Just adding a per thread renaming table and
keeping separate PCs

— Independent commitment can be supported by logically
keeping a separate reorder buffer for each thread

Source: Micrprocessor Report, December 6, 1999
“Compaq Chooses SMT for Alpha”
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Multithreaded Categories = Design Challenges in SMT

Simultaneous

@ sﬁpe.m%ab ;“9.6%”5' CO:SEI'GE;”EE‘? Mﬁ";olcﬁsg 'V'.l”tﬁ"dﬁg « Since SMT makes sense only with fine-grained
e = N N implementation, impact of fine-grained scheduling

ECCC SNOO E000 EONY B0 ingle thread perf 2
o - on single thread performance:
5 EELL EELL EENL] — A preferred thread approach sacrifices neither throughput nor
o OEEL] BEEEL] HENL] single-thread performance?
8 L1000 1] = D|D L] — Unfortunately, with a preferred thread, the processor is likely to
8 010 ] ] D NN sacrifice s.ome thr.oughput, when preferred threa.d stalls
s EECIC NININE DDID » Larger register file needed to hold multiple contexts
o
— B0 L1010 II.II N i i i i

ot affecting clock cycle time, especially in

(<B) )
& 555% %%%% =E:% - Instrgé:tiorcliissue - more candidate instructions need to be
= ! considere

Dot . L0 .D' — Instruction completion - choosing which instructions to commit

ERCOO NOOO anoo DD: may be challenging

* Ensuring that cache and TLB conflicts generated
Thread 1 by SMT do not degrade performance
= [ Thread 3 B Thread 5 y g p
Thread 2 Thread 4 [ Idle slot
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Branch redirects %w 4’

.................................................

Power 4
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Power 5. 8 execution units in
out-of-order engine, each may
Issue an instruction each cycle.

Instruction crack and
group formation

Interrupis and flushes

Branch redirects Out-of-order processing

........................................... : _
e saaeaeas POWEH S,

I . .
:_+| ¥ | it Branch regISt r sets)
)

pipeline

Instruction crack and
group formation

Group formation and

o oo ! 2 fetch (pC)'“S"”m” i
;2 I decodes

nbaru san ushes

peint pipeline




Power 5 data flow ... Power 5 thread performance ...
/:tifranch frrdlc‘llon . \J igii%?}:n . R el atiV e prl Ority /Single—thread_mode
[FELERIES T{&E: o of each thread -
l Ahern:alewblles . HI“HHHH \ ] I%I HH] Tran?siat:on Cl?aac:e ContrOIIable In 9:'_:.
jl ﬁ a1 LI 110 || TTTT0 ) (ITT LI_H_l hardware. : -
e 15 Dispatch [FPUQ] completion queLe =
e el HIIIIIIIIIH IIHH er_—|||\H|| /{?
;:1;:;1 Shared Read g Write %
o ,E;:zms — For balanced g
= operation, both
[—1Shared by two threads [ Thread 0 resources [ Thread 1 resources | =
) threads run 07 27 47 67 7.7 7.6 7.4 7.2 7.0 1,1
Why only 2 threads? With 4, one of the slower than if bR
. . 14 34 44 43 41
shared resources (physical registers, cache, they “owned” 23 33 32 Foe
. _ s 2 !
memory bandwidth) would be prone to the machine. ol
bottlen eCk Thread 0 priority, thread 1 priority
[BThread 0 IPC & Thread 1 1PG |
Changes in Power 5to support SMT Initial Performance of SMT
* Increased associativity of L1 instruction cache + Pentium 4 Extreme SMT yields 1.01 speedup for
and the instruction address translation buffers SPECint_rate benchmark and 1.07 for SPECfp_rate
* Added per thread load and store queues — Pentium 4 is dual threaded SMT
* Increased size of the L2 (1.92 vs. 1.44 MB) and L3 — SPECRate requires that each SPEC benchmark be run against a
caches vendor-selected number of copies of the same benchmark
+ Added separate instruction prefetch and * Running on Pentium 4 each of 26 SPEC
buffering per thread benchmarks paired with every other (262 runs)
+ Increased the number of virtual registers from speed-ups from 0.90 to 1.58; average was 1.20
152 to 240 » Power 5, 8 processor server 1.23 faster for
« Increased the size of several issue queues SPECint_rate with SMT, 1.16 faster for SPECfp_rate
» The Power5 core is about 24% larger than the * Power 5 running 2 copies of each app speedup
Power4 core because of the addition of SMT between 0.89 and 1.41
support — Most gained some
— FI.Pt. apps had most cache conflicts and least gains
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Head to Head ILP competition

Performance on SPECint2000

Processor Micro architecture Fetch / FU Clock | Transis | Power ‘u Itanium 2 @ Pentium 4 O AMD Athlon 64 O Power 5 ‘
Issue/ Rate -tors
Execute (GHz) | Die size 3500
Intel Speculative 3/3/4 | 7int. | 3.8 [125M | 115
Pentium dynamically 1FP 122 W 3000
4 scheduled; deeply mm?
Extreme pipelined; SMT 2500
AMD Speculative 3/3/4 6int. | 2.8 |114M | 104 ° L
Athlon 64 dynamically 3FP 115 W 5 o
FX-57 scheduled mm?2 O
IBM Speculative 8/4/8 | 6int. | 1.9 | 200 M | 80W &
Power5 dynamically 2FP 300 | (est.)
(A CcpPU scheduled; SMT; mm?2 1000
only) 2 CPU cores/chip (est.)
500
Intel Statically 6/5/11 | 9int. | 1.6 |592M | 130
Itanium 2 scheduled 2FP 423 W ,
VL |W-Sty le mm?2 gzip vpr gee mef crafty parser eon perlbmk gap vortex bzip2 twolf
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Performance on SPECfp2000 Normalized Performance: Efficiency
14000 35
[@ tanium 2 @ Pentium 4 O AMD Athlon 64 O Power 5 | O 1tanium 2 B Pentium 4 0 AMD Athion 64 0 POWER & T p
t| e
12000 M e aln|A|P
i nft|tl|o
il |h|w
10000 | 25 ujlul|l |e
Rank (2|4 |n|s
o 8000 - B Int/Trans 4/211|3
§ 15 FPTrans |42 (1|3
e Int/area 4/211|3
4000 FP/area 421113
s Int/Watt 43112
2000 1 1 FP/Watt 2 4 3 1
’ SPECINnt /M SPECFP / M ‘ SPECInt / SPECFP / ‘ SPECInt / SPECFF;7
0+ — Transistors Transistors mmn2 mm”~2 Watt Watt
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No Silver Bullet for ILP

* No obvious over all leader in performance

* The AMD Athlon leads on SPECInt performance
followed by the Pentium 4, Itanium 2, and Power5

* [tanium 2 and Power5, which perform similarly on
SPECFP, clearly dominate the Athlon and
Pentium 4 on SPECFP

* [tanium 2 is the most inefficient processor both
for Fl. Pt. and integer code for all but one
efficiency measure (SPECFP/Watt)

» Athlon and Pentium 4 both make good use of
transistors and area in terms of efficiency,

Limits to ILP

* Doubling issue rates above today’s 3-6
instructions per clock, say to 6 to 12 instructions,
probably requires a processor to

— issue 3 or 4 data memory accesses per cycle,

— resolve 2 or 3 branches per cycle,

— rename and access more than 20 registers per cycle, and
— fetch 12 to 24 instructions per cycle.

* The complexities of implementing these
capabilities is likely to mean sacrifices in the
maximum clock rate

— E.g, widest issue processor is the Itanium 2, but it also has
the slowest clock rate, despite the fact that it consumes the

. . most power!
* IBM Power5 is the most effective user of energy
on SPECFP and essentially tied on SPECINT
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Limits to ILP Commentary

* Most techniques for increasing performance
increase power consumption

* The key question is whether a technique is energy
efficient: does it increase power consumption
faster than it increases performance?

* Multiple issue processors techniques all are
energy inefficient:
1. Issuing multiple instructions incurs some overhead in
logic that grows faster than the issue rate grows
2. Growing gap between peak issue rates and sustained
performance
* Number of transistors switching = f(peak issue
rate), and performance = f( sustained rate),
growing gap between peak and sustained
performance
20k increasingeéferyirperiunit of performance

e [tanium architecture does not represent a significant
breakthrough in scaling ILP or in avoiding the problems of
complexity and power consumption

« Instead of pursuing more ILP, architects are increasingly
focusing on TLP implemented with single-chip
multiprocessors

* In 2000, IBM announced the 1st commercial single-chip,
general-purpose multiprocessor, the Power4, which
contains 2 Power3 processors and an integrated L2 cache

— Since then, Sun Microsystems, AMD, and Intel have switch to a focus
on single-chip multiprocessors rather than more aggressive
uniprocessors.

* Right balance of ILP and TLP is unclear today

— Perhaps right choice for server market, which can exploit more TLP,
may differ from desktop, where single-thread performance may
continue to be a primary requirement
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And in conclusion ...

Limits to ILP (power efficiency, compilers,
dependencies ...) seem to limit to 3to 6 issue for
practical options

Explicitly parallel (Data level parallelism or
Thread level parallelism) is next step to
performance
Coarse grain vs. Fine grained multihreading
— Only on big stall vs. every clock cycle
Simultaneous Multithreading if fine grained
multithreading based on OOO superscalar
microarchitecture
— Instead of replicating registers, reuse rename registers

[tanium/EPIC/VLIW is not a breakthrough in ILP
Balance of ILP and TLP decided in marketplace
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