
EECS 252 Graduate Computer
Architecture

Lec 13 – Snooping Cache and
Directory Based Multiprocessors

David Patterson
Electrical Engineering and Computer Sciences

University of California, Berkeley

http://www.eecs.berkeley.edu/~pattrsn
http://vlsi.cs.berkeley.edu/cs252-s06

3/3/2006 CS252 s06 snooping cache MP 2

Review
• 1 instruction operates on vectors of data
• Vector loads get data from memory into big register files,

operate, and then vector store
• E.g., Indexed load, store for sparse matrix
• Easy to add vector to commodity instruction set

– E.g., Morph SIMD into vector

• Vector is very effecient architecture for vectorizable codes,
including multimedia and many scientific codes

• “End” of uniprocessors speedup => Multiprocessors
• Parallelism challenges: % parallalizable, long latency to

remote memory
• Centralized vs. distributed memory

– Small MP vs. lower latency, larger BW for Larger MP

• Message Passing vs. Shared Address
– Uniform access time vs. Non-uniform access time

3/3/2006 CS252 s06 snooping cache MP 3

Outline
• Review
• Coherence
• Write Consistency
• Administrivia
• Snooping
• Building Blocks
• Snooping protocols and examples
• Coherence traffic and Performance on MP
• Directory-based protocols and examples

(if get this far)
• Conclusion

3/3/2006 CS252 s06 snooping cache MP 4

Challenges of Parallel Processing

1. Application parallelism ⇒ primarily via
new algorithms that have better parallel
performance

2. Long remote latency impact ⇒ both by
architect and by the programmer

• For example, reduce frequency of
remote accesses either by
– Caching shared data (HW)
– Restructuring the data layout to make more

accesses local (SW)
• Today’s lecture on HW to help latency

via caches

3/3/2006 CS252 s06 snooping cache MP 5

Symmetric Shared-Memory Architectures

• From multiple boards on a shared bus to
multiple processors inside a single chip

• Caches both
– Private data are used by a single processor
– Shared data are used by multiple processors

• Caching shared data
⇒ reduces latency to shared data,
memory bandwidth for shared data,
and interconnect bandwidth
⇒ cache coherence problem

3/3/2006 CS252 s06 snooping cache MP 6

Example Cache Coherence Problem

– Processors see different values for u after event 3
– With write back caches, value written back to memory depends on

happenstance of which cache flushes or writes back value when
» Processes accessing main memory may see very stale value

– Unacceptable for programming, and its frequent!

I/O devices

Memory

P1

$ $ $

P2 P3

5

u = ?
4

u = ?

u:5
1

u :5

2

u :5

3

u= 7

3/3/2006 CS252 s06 snooping cache MP 7

Example

• Intuition not guaranteed by coherence
• expect memory to respect order between accesses

to different locations issued by a given process
– to preserve orders among accesses to same location by

different processes

• Coherence is not enough!
– pertains only to single location

P1 P2

/*Assume initial value of A and flag is 0*/
A = 1; while (flag == 0); /*spin idly*/
flag = 1; print A;

Mem

P1
Pn

Conceptual
Picture

3/3/2006 CS252 s06 snooping cache MP 8

P

Disk

Memory

L2

L1

100:34

100:35

100:67

Intuitive Memory Model

• Too vague and simplistic; 2 issues
1. Coherence defines values returned by a read
2. Consistency determines when a written value will

be returned by a read
• Coherence defines behavior to same location,

Consistency defines behavior to other locations

• Reading an address
should return the last
value written to that
address
– Easy in uniprocessors,

except for I/O

3/3/2006 CS252 s06 snooping cache MP 9

Defining Coherent Memory System
1. Preserve Program Order: A read by processor P to

location X that follows a write by P to X, with no writes of
X by another processor occurring between the write and
the read by P, always returns the value written by P

2. Coherent view of memory: Read by a processor to
location X that follows a write by another processor to X
returns the written value if the read and write are
sufficiently separated in time and no other writes to X
occur between the two accesses

3. Write serialization: 2 writes to same location by any 2
processors are seen in the same order by all processors
– If not, a processor could keep value 1 since saw as last write
– For example, if the values 1 and then 2 are written to a

location, processors can never read the value of the location
as 2 and then later read it as 1

3/3/2006 CS252 s06 snooping cache MP 10

Write Consistency

• For now assume
1. A write does not complete (and allow the next

write to occur) until all processors have seen the
effect of that write

2. The processor does not change the order of any
write with respect to any other memory access

⇒ if a processor writes location A followed by
location B, any processor that sees the new
value of B must also see the new value of A

• These restrictions allow the processor to reorder
reads, but forces the processor to finish writes in
program order

3/3/2006 CS252 s06 snooping cache MP 11

Basic Schemes for Enforcing Coherence

• Program on multiple processors will normally have
copies of the same data in several caches

– Unlike I/O, where its rare

• Rather than trying to avoid sharing in SW,
SMPs use a HW protocol to maintain coherent caches

– Migration and Replication key to performance of shared data

• Migration - data can be moved to a local cache and
used there in a transparent fashion

– Reduces both latency to access shared data that is allocated
remotely and bandwidth demand on the shared memory

• Replication – for reading shared data simultaneously,
since caches make a copy of data in local cache

– Reduces both latency of access and contention for read shared data

3/3/2006 CS252 s06 snooping cache MP 12

CS 252 Administrivia
• Monday March 20 Quiz 5-8 PM 405 Soda
• Due Friday: Problem Set and Comments on 2 papers

– Problem Set Assignment done in pairs
– Gene Amdahl, "Validity of the Single Processor Approach to

Achieving Large-Scale Computing Capabilities", AFIPS
Conference Proceedings, (30), pp. 483-485, 1967.

– Lorin Hochstein et al "Parallel Programmer Productivity: A Case
Study of Novice Parallel Programmers." International Conference
for High Performance Computing, Networking and Storage (SC'05).
November 2005

• Be sure to comment
– Amdahl: How long is paper? How much of it is Amdahl’s Law?

What other comments about parallelism besides Amdahl’s Law?
– Hochstein: What programming styles investigated? What was

methodology? How would you redesign the experiment they did?
What other metrics would be important to capture? Assuming
these results of programming productivity reflect the real world,
what should architectures of the future do (or not do)?

• Monday discussion of papers

3/3/2006 CS252 s06 snooping cache MP 13

Outline

• Review
• Coherence
• Write Consistency
• Administrivia
• Snooping
• Building Blocks
• Snooping protocols and examples
• Coherence traffic and Performance on MP
• Directory-based protocols and examples

3/3/2006 CS252 s06 snooping cache MP 14

2 Classes of Cache Coherence Protocols

1. Directory based — Sharing status of a block of
physical memory is kept in just one location,
the directory

2. Snooping — Every cache with a copy of data
also has a copy of sharing status of block, but
no centralized state is kept
• All caches are accessible via some broadcast medium

(a bus or switch)
• All cache controllers monitor or snoop on the medium

to determine whether or not they have a copy of a
block that is requested on a bus or switch access

3/3/2006 CS252 s06 snooping cache MP 15

Snoopy Cache-Coherence Protocols

• Cache Controller “snoops” all transactions on
the shared medium (bus or switch)

– relevant transaction if for a block it contains
– take action to ensure coherence

» invalidate, update, or supply value
– depends on state of the block and the protocol

• Either get exclusive access before write via write
invalidate or update all copies on write

State
Address
Data

I/O devicesMem

P1

$

Bus snoop

$

Pn

Cache-memory
transaction

3/3/2006 CS252 s06 snooping cache MP 16

Example: Write-thru Invalidate

• Must invalidate before step 3
• Write update uses more broadcast medium BW
⇒ all recent MPUs use write invalidate

I/O devices

Memory

P1

$ $ $

P2 P3

5

u = ?
4

u = ?

u:5
1

u :5

2

u :5

3

u= 7

u = 7

3/3/2006 CS252 s06 snooping cache MP 17

Architectural Building Blocks
• Cache block state transition diagram

– FSM specifying how disposition of block changes
» invalid, valid, exclusive

• Broadcast Medium Transactions (e.g., bus)
– Fundamental system design abstraction
– Logically single set of wires connect several devices
– Protocol: arbitration, command/addr, data
⇒ Every device observes every transaction

• Broadcast medium enforces serialization of read or
write accesses ⇒ Write serialization

– 1st processor to get medium invalidates others copies
– Implies cannot complete write until it obtains bus
– All coherence schemes require serializing accesses to same

cache block
• Also need to find up-to-date copy of cache block

3/3/2006 CS252 s06 snooping cache MP 18

Locate up-to-date copy of data
• Write-through: get up-to-date copy from memory

– Write through simpler if enough memory BW

• Write-back harder
– Most recent copy can be in a cache

• Can use same snooping mechanism
1. Snoop every address placed on the bus
2. If a processor has dirty copy of requested cache

block, it provides it in response to a read
request and aborts the memory access

– Complexity from retrieving cache block from cache, which
can take longer than retrieving it from memory

• Write-back needs lower memory bandwidth
⇒ Support larger numbers of faster processors
⇒ Most multiprocessors use write-back

3/3/2006 CS252 s06 snooping cache MP 19

Cache Resources for WB Snooping

• Normal cache tags can be used for snooping
• Valid bit per block makes invalidation easy
• Read misses easy since rely on snooping
• Writes ⇒ Need to know if know whether any

other copies of the block are cached
– No other copies ⇒ No need to place write on bus for WB
– Other copies ⇒ Need to place invalidate on bus

3/3/2006 CS252 s06 snooping cache MP 20

Cache Resources for WB Snooping

• To track whether a cache block is shared, add
extra state bit associated with each cache block,
like valid bit and dirty bit

– Write to Shared block ⇒ Need to place invalidate on
bus and mark cache block as private (if an option)

– No further invalidations will be sent for that block
– This processor called owner of cache block
– Owner then changes state from shared to unshared (or

exclusive)

3/3/2006 CS252 s06 snooping cache MP 21

Cache behavior in response to bus

• Every bus transaction must check the cache-
address tags

– could potentially interfere with processor cache accesses

• A way to reduce interference is to duplicate tags
– One set for caches access, one set for bus accesses

• Another way to reduce interference is to use L2 tags
– Since L2 less heavily used than L1
⇒ Every entry in L1 cache must be present in the L2 cache, called

the inclusion property
– If Snoop gets a hit in L2 cache, then it must arbitrate for the L1

cache to update the state and possibly retrieve the data, which
usually requires a stall of the processor

3/3/2006 CS252 s06 snooping cache MP 22

Example Protocol

• Snooping coherence protocol is usually
implemented by incorporating a finite-state
controller in each node

• Logically, think of a separate controller
associated with each cache block

– That is, snooping operations or cache requests for different
blocks can proceed independently

• In implementations, a single controller allows
multiple operations to distinct blocks to proceed
in interleaved fashion

– that is, one operation may be initiated before another is
completed, even through only one cache access or one bus
access is allowed at time

3/3/2006 CS252 s06 snooping cache MP 23

Write-through Invalidate Protocol

• 2 states per block in each cache
– as in uniprocessor
– state of a block is a p-vector of states
– Hardware state bits associated with

blocks that are in the cache
– other blocks can be seen as being in

invalid (not-present) state in that cache
• Writes invalidate all other cache

copies
– can have multiple simultaneous readers

of block,but write invalidates them

I

V
BusWr / -

PrRd/ --
PrWr / BusWr

PrWr / BusWr

PrRd / BusRd

State Tag Data

I/O devicesMem

P1

$ $

Pn

Bus

State Tag Data

PrRd: Processor Read
PrWr: Processor Write
BusRd: Bus Read
BusWr: Bus Write

3/3/2006 CS252 s06 snooping cache MP 24

Is 2-state Protocol Coherent?
• Processor only observes state of memory system by issuing

memory operations
• Assume bus transactions and memory operations are atomic

and a one-level cache
– all phases of one bus transaction complete before next one starts
– processor waits for memory operation to complete before issuing next
– with one-level cache, assume invalidations applied during bus transaction

• All writes go to bus + atomicity
– Writes serialized by order in which they appear on bus (bus order)
=> invalidations applied to caches in bus order

• How to insert reads in this order?
– Important since processors see writes through reads, so determines

whether write serialization is satisfied
– But read hits may happen independently and do not appear on bus or

enter directly in bus order

• Let’s understand other ordering issues

3/3/2006 CS252 s06 snooping cache MP 25

Ordering

• Writes establish a partial order
• Doesn’t constrain ordering of reads, though

shared-medium (bus) will order read misses too
– any order among reads between writes is fine,

as long as in program order

R W

R

R R

R R

RR R W

R

R

R R

RR

R

P0:

P1:

P2:

3/3/2006 CS252 s06 snooping cache MP 26

Example Write Back Snoopy Protocol

• Invalidation protocol, write-back cache
– Snoops every address on bus
– If it has a dirty copy of requested block, provides that block in

response to the read request and aborts the memory access

• Each memory block is in one state:
– Clean in all caches and up-to-date in memory (Shared)
– OR Dirty in exactly one cache (Exclusive)
– OR Not in any caches

• Each cache block is in one state (track these):
– Shared : block can be read
– OR Exclusive : cache has only copy, its writeable, and dirty
– OR Invalid : block contains no data (in uniprocessor cache too)

• Read misses: cause all caches to snoop bus
• Writes to clean blocks are treated as misses

3/3/2006 CS252 s06 snooping cache MP 27

CPU Read hit
Write-Back State Machine - CPU

• State machine
for CPU requests
for each
cache block

• Non-resident
blocks invalid

Invalid
Shared

(read/only)

Exclusive
(read/write)

CPU Read

CPU Write

Place read miss
on bus

Place Write
Miss on bus

CPU Write
Place Write Miss on Bus

CPU Write Miss (?)
Write back cache block
Place write miss on bus

CPU read hit
CPU write hit

Cache Block
State

3/3/2006 CS252 s06 snooping cache MP 28

Write-Back State Machine- Bus request
• State machine

for bus requests
for each
cache block Invalid Shared

(read/only)

Exclusive
(read/write)

Write Back
Block; (abort
memory access)

Write miss
for this block

Read miss
for this block

Write miss
for this block

Write Back
Block; (abort
memory access)

3/3/2006 CS252 s06 snooping cache MP 29

Block-replacement

• State machine
for CPU requests
for each
cache block

Invalid
Shared

(read/only)

Exclusive
(read/write)

CPU Read

CPU Write

CPU Read hit

Place read miss
on bus

Place Write
Miss on bus

CPU read miss
Write back block,
Place read miss
on bus

CPU Write
Place Write Miss on Bus

CPU Read miss
Place read miss
on bus

CPU Write Miss
Write back cache block
Place write miss on bus

CPU read hit
CPU write hit

Cache Block
State

3/3/2006 CS252 s06 snooping cache MP 30

Place read miss
on bus

Write-back State Machine-III
• State machine

for CPU requests
for each
cache block and
for bus requests
for each
cache block

Invalid
Shared

(read/only)

Exclusive
(read/write)

CPU Read

CPU Write

CPU Read hit

Place Write
Miss on bus
CPU read miss
Write back block,
Place read miss
on bus CPU Write

Place Write Miss on Bus

CPU Read miss
Place read miss
on bus

CPU Write Miss
Write back cache block
Place write miss on bus

CPU read hit
CPU write hit

Cache Block
State

Write miss
for this block

Write Back
Block; (abort
memory access)

Write miss
for this block

Read miss
for this block

Write Back
Block; (abort
memory access)

3/3/2006 CS252 s06 snooping cache MP 31

Example

P1 P2 Bus Memory
step State Addr Value State Addr Value Action Proc. Addr Value Addr Value

P1: Write 10 to A1
P1: Read A1
P2: Read A1

P2: Write 20 to A1
P2: Write 40 to A2

P1: Read A1
P2: Read A1

P1 Write 10 to A1

P2: Write 20 to A1
P2: Write 40 to A2

Assumes A1 and A2 map to same cache block,
initial cache state is invalid

3/3/2006 CS252 s06 snooping cache MP 32

Example

P1 P2 Bus Memory
step State Addr Value State Addr Value Action Proc. Addr Value Addr Value

P1: Write 10 to A1 Excl. A1 10 WrMs P1 A1
P1: Read A1
P2: Read A1

P2: Write 20 to A1
P2: Write 40 to A2

P1: Read A1
P2: Read A1

P1 Write 10 to A1

P2: Write 20 to A1
P2: Write 40 to A2

Assumes A1 and A2 map to same cache block

3/3/2006 CS252 s06 snooping cache MP 33

Example

P1 P2 Bus Memory
step State Addr Value State Addr Value Action Proc. Addr Value Addr Value

P1: Write 10 to A1 Excl. A1 10 WrMs P1 A1
P1: Read A1 Excl. A1 10
P2: Read A1

P2: Write 20 to A1
P2: Write 40 to A2

P1: Read A1
P2: Read A1

P1 Write 10 to A1

P2: Write 20 to A1
P2: Write 40 to A2

Assumes A1 and A2 map to same cache block

3/3/2006 CS252 s06 snooping cache MP 34

Example

P1 P2 Bus Memory
step State Addr Value State Addr Value Action Proc. Addr Value Addr Value

P1: Write 10 to A1 Excl. A1 10 WrMs P1 A1
P1: Read A1 Excl. A1 10
P2: Read A1 Shar. A1 RdMs P2 A1

Shar. A1 10 WrBk P1 A1 10 A1 10
Shar. A1 10 RdDa P2 A1 10 A1 10

P2: Write 20 to A1
P2: Write 40 to A2

P1: Read A1
P2: Read A1

P1 Write 10 to A1

P2: Write 20 to A1
P2: Write 40 to A2

Assumes A1 and A2 map to same cache block

3/3/2006 CS252 s06 snooping cache MP 35

Example

P1 P2 Bus Memory
step State Addr Value State Addr Value Action Proc. Addr Value Addr Value

P1: Write 10 to A1 Excl. A1 10 WrMs P1 A1
P1: Read A1 Excl. A1 10
P2: Read A1 Shar. A1 RdMs P2 A1

Shar. A1 10 WrBk P1 A1 10 A1 10
Shar. A1 10 RdDa P2 A1 10 A1 10

P2: Write 20 to A1 Inv. Excl. A1 20 WrMs P2 A1 A1 10
P2: Write 40 to A2

P1: Read A1
P2: Read A1

P1 Write 10 to A1

P2: Write 20 to A1
P2: Write 40 to A2

Assumes A1 and A2 map to same cache block

3/3/2006 CS252 s06 snooping cache MP 36

Example

P1 P2 Bus Memory
step State Addr Value State Addr Value Action Proc. Addr Value Addr Value

P1: Write 10 to A1 Excl. A1 10 WrMs P1 A1
P1: Read A1 Excl. A1 10
P2: Read A1 Shar. A1 RdMs P2 A1

Shar. A1 10 WrBk P1 A1 10 A1 10
Shar. A1 10 RdDa P2 A1 10 A1 10

P2: Write 20 to A1 Inv. Excl. A1 20 WrMs P2 A1 A1 10
P2: Write 40 to A2 WrMs P2 A2 A1 10

Excl. A2 40 WrBk P2 A1 20 A1 20

P1: Read A1
P2: Read A1

P1 Write 10 to A1

P2: Write 20 to A1
P2: Write 40 to A2

Assumes A1 and A2 map to same cache block,
but A1 != A2

3/3/2006 CS252 s06 snooping cache MP 37

Implementation Complications

• Write Races:
– Cannot update cache until bus is obtained

» Otherwise, another processor may get bus first,
and then write the same cache block!

– Two step process:
» Arbitrate for bus
» Place miss on bus and complete operation

– If miss occurs to block while waiting for bus,
handle miss (invalidate may be needed) and then restart.

– Split transaction bus:
» Bus transaction is not atomic:

can have multiple outstanding transactions for a block
» Multiple misses can interleave,

allowing two caches to grab block in the Exclusive state
» Must track and prevent multiple misses for one block

• Must support interventions and invalidations

3/3/2006 CS252 s06 snooping cache MP 38

Implementing Snooping Caches

• Multiple processors must be on bus, access to both
addresses and data

• Add a few new commands to perform coherency,
in addition to read and write

• Processors continuously snoop on address bus
– If address matches tag, either invalidate or update

• Since every bus transaction checks cache tags,
could interfere with CPU just to check:

– solution 1: duplicate set of tags for L1 caches just to allow checks in
parallel with CPU

– solution 2: L2 cache already duplicate,
provided L2 obeys inclusion with L1 cache

» block size, associativity of L2 affects L1

3/3/2006 CS252 s06 snooping cache MP 39

Limitations in Symmetric Shared-Memory
Multiprocessors and Snooping Protocols
• Single memory accommodate all CPUs
⇒ Multiple memory banks

• Bus-based multiprocessor, bus must
support both coherence traffic & normal
memory traffic

⇒ Multiple buses or interconnection
networks (cross bar or small point-to-point)

• Opteron
– Memory connected directly to each dual-core chip
– Point-to-point connections for up to 4 chips
– Remote memory and local memory latency are similar,

allowing OS Opteron as UMA computer
3/3/2006 CS252 s06 snooping cache MP 40

Performance of Symmetric Shared-Memory
Multiprocessors
• Cache performance is combination of
1. Uniprocessor cache miss traffic
2. Traffic caused by communication

– Results in invalidations and subsequent cache misses

• 4th C: coherence miss
– Joins Compulsory, Capacity, Conflict

3/3/2006 CS252 s06 snooping cache MP 41

Coherency Misses

1. True sharing misses arise from the
communication of data through the cache
coherence mechanism
• Invalidates due to 1st write to shared block
• Reads by another CPU of modified block in different cache
• Miss would still occur if block size were 1 word

2. False sharing misses when a block is
invalidated because some word in the block,
other than the one being read, is written into
• Invalidation does not cause a new value to be

communicated, but only causes an extra cache miss
• Block is shared, but no word in block is actually shared

⇒ miss would not occur if block size were 1 word

3/3/2006 CS252 s06 snooping cache MP 42

Example: True v. False Sharing v. Hit?

Read x25

Write x24

Write x13

Read x22

Write x11
True, False, Hit? Why?P2P1Time

• Assume x1 and x2 in same cache block.
P1 and P2 both read x1 and x2 before.

True miss; invalidate x1 in P2

False miss; x1 irrelevant to P2

False miss; x1 irrelevant to P2

False miss; x1 irrelevant to P2

True miss; invalidate x2 in P1

3/3/2006 CS252 s06 snooping cache MP 43

MP Performance 4 Processor
Commercial Workload: OLTP, Decision
Support (Database), Search Engine

0
0.25
0.5

0.75
1

1.25
1.5

1.75
2

2.25
2.5

2.75
3

3.25

1 MB 2 MB 4 MB 8 MB
Cache size

Instruction
Capacity/Conflict
Cold
False Sharing
True Sharing

• True sharing
and false
sharing
unchanged
going from 1 MB
to 8 MB (L3 cache)

• Uniprocessor
cache misses
improve with
cache size
increase
(Instruction,
Capacity/Conflict,
Compulsory)

(M
em

or
y)

 C
yc

le
s

pe
r I

ns
tr

uc
tio

n

3/3/2006 CS252 s06 snooping cache MP 44

MP Performance 2MB Cache
Commercial Workload: OLTP, Decision
Support (Database), Search Engine

• True sharing,
false sharing
increase
going from 1
to 8 CPUs

0

0.5

1

1.5

2

2.5

3

1 2 4 6 8
Processor count

Instruction
Conflict/Capacity
Cold
False Sharing
True Sharing

(M
em

or
y)

 C
yc

le
s

pe
r I

ns
tr

uc
tio

n

3/3/2006 CS252 s06 snooping cache MP 45

Outline
• Review
• Coherence
• Write Consistency
• Administrivia
• Snooping
• Building Blocks
• Snooping protocols and examples
• Coherence traffic and Performance on MP
• Directory-based protocols and examples

(if get this far)
• Conclusion

3/3/2006 CS252 s06 snooping cache MP 46

A Cache Coherent System Must:

• Provide set of states, state transition diagram,
and actions

• Manage coherence protocol
– (0) Determine when to invoke coherence protocol
– (a) Find info about state of block in other caches to

determine action
» whether need to communicate with other cached copies

– (b) Locate the other copies
– (c) Communicate with those copies (invalidate/update)

• (0) is done the same way on all systems
– state of the line is maintained in the cache
– protocol is invoked if an “access fault” occurs on the line

• Different approaches distinguished by (a) to (c)

3/3/2006 CS252 s06 snooping cache MP 47

Bus-based Coherence

• All of (a), (b), (c) done through broadcast on bus
– faulting processor sends out a “search”
– others respond to the search probe and take necessary

action

• Could do it in scalable network too
– broadcast to all processors, and let them respond

• Conceptually simple, but broadcast doesn’t
scale with p

– on bus, bus bandwidth doesn’t scale
– on scalable network, every fault leads to at least p network

transactions

• Scalable coherence:
– can have same cache states and state transition diagram
– different mechanisms to manage protocol

3/3/2006 CS252 s06 snooping cache MP 48

Scalable Approach: Directories

• Every memory block has associated directory
information

– keeps track of copies of cached blocks and their states
– on a miss, find directory entry, look it up, and communicate

only with the nodes that have copies if necessary
– in scalable networks, communication with directory and

copies is through network transactions

• Many alternatives for organizing directory
information

3/3/2006 CS252 s06 snooping cache MP 49

Basic Operation of Directory

• k processors.
• With each cache-block in memory:

k presence-bits, 1 dirty-bit
• With each cache-block in cache:

1 valid bit, and 1 dirty (owner) bit• ••

P P

Cache Cache

Memory Directory

presence bits dirty bit

Interconnection Network

• Read from main memory by processor i:
• If dirty-bit OFF then { read from main memory; turn p[i] ON; }
• if dirty-bit ON then { recall line from dirty proc (cache state to

shared); update memory; turn dirty-bit OFF; turn p[i] ON;
supply recalled data to i;}

• Write to main memory by processor i:
• If dirty-bit OFF then { supply data to i; send invalidations to all

caches that have the block; turn dirty-bit ON; turn p[i] ON; ... }
• ... 3/3/2006 CS252 s06 snooping cache MP 50

Directory Protocol

• Similar to Snoopy Protocol: Three states
– Shared: ≥ 1 processors have data, memory up-to-date
– Uncached (no processor hasit; not valid in any cache)
– Exclusive: 1 processor (owner) has data;

memory out-of-date

• In addition to cache state, must track which
processors have data when in the shared state
(usually bit vector, 1 if processor has copy)

• Keep it simple(r):
– Writes to non-exclusive data

=> write miss
– Processor blocks until access completes
– Assume messages received

and acted upon in order sent

3/3/2006 CS252 s06 snooping cache MP 51

Directory Protocol

• No bus and don’t want to broadcast:
– interconnect no longer single arbitration point
– all messages have explicit responses

• Terms: typically 3 processors involved
– Local node where a request originates
– Home node where the memory location

of an address resides
– Remote node has a copy of a cache

block, whether exclusive or shared

• Example messages on next slide:
P = processor number, A = address

3/3/2006 CS252 s06 snooping cache MP 52

Directory Protocol Messages (Fig 4.22)
Message type Source Destination Msg Content
Read miss Local cache Home directory P, A

– Processor P reads data at address A;
make P a read sharer and request data

Write miss Local cache Home directory P, A
– Processor P has a write miss at address A;

make P the exclusive owner and request data
Invalidate Home directory Remote caches A

– Invalidate a shared copy at address A
Fetch Home directory Remote cache A

– Fetch the block at address A and send it to its home directory;
change the state of A in the remote cache to shared

Fetch/Invalidate Home directory Remote cache A
– Fetch the block at address A and send it to its home directory;

invalidate the block in the cache
Data value reply Home directory Local cache Data

– Return a data value from the home memory (read miss response)
Data write back Remote cache Home directory A, Data

– Write back a data value for address A (invalidate response)

3/3/2006 CS252 s06 snooping cache MP 53

State Transition Diagram for One Cache
Block in Directory Based System

• States identical to snoopy case;
transactions very similar.

• Transitions caused by read misses, write
misses, invalidates, data fetch requests

• Generates read miss & write miss msg
to home directory.

• Write misses that were broadcast on the
bus for snooping => explicit invalidate &
data fetch requests.

• Note: on a write, a cache block is bigger,
so need to read the full cache block

3/3/2006 CS252 s06 snooping cache MP 54

CPU -Cache State Machine

• State machine
for CPU requests
for each
memory block

• Invalid state
if in memory

Fetch/Invalidate
send Data Write Back message

to home directory

Invalidate

Invalid

Exclusive
(read/write)

CPU Read

CPU Read hit

Send Read Miss
message

CPU Write:
Send Write Miss
msg to h.d.

CPU Write: Send
Write Miss message
to home directory

CPU read hit
CPU write hit

Fetch: send Data Write Back
message to home directory

CPU read miss:
Send Read Miss

CPU write miss:
send Data Write Back message
and Write Miss to home directory

CPU read miss: send Data
Write Back message and
read miss to home directory

Shared
(read/only)

3/3/2006 CS252 s06 snooping cache MP 55

State Transition Diagram for Directory

• Same states & structure as the transition
diagram for an individual cache

• 2 actions: update of directory state &
send messages to satisfy requests

• Tracks all copies of memory block
• Also indicates an action that updates the

sharing set, Sharers, as well as sending
a message

3/3/2006 CS252 s06 snooping cache MP 56

Directory State Machine

• State machine
for Directory
requests for each
memory block

• Uncached state
if in memory

Data Write Back:
Sharers = {}

(Write back block)

Uncached
Shared

(read only)

Exclusive
(read/write)

Read miss:
Sharers = {P}
send Data Value
Reply

Write Miss:
send Invalidate
to Sharers;
then Sharers = {P};
send Data Value
Reply msg

Write Miss:
Sharers = {P};
send Data
Value Reply
msg

Read miss:
Sharers += {P};
send Fetch;
send Data Value Reply
msg to remote cache
(Write back block)

Read miss:
Sharers += {P};
send Data Value Reply

Write Miss:
Sharers = {P};
send Fetch/Invalidate;
send Data Value Reply
msg to remote cache

3/3/2006 CS252 s06 snooping cache MP 57

Example Directory Protocol

• Message sent to directory causes two actions:
– Update the directory
– More messages to satisfy request

• Block is in Uncached state: the copy in memory is the
current value; only possible requests for that block are:

– Read miss: requesting processor sent data from memory &requestor made
only sharing node; state of block made Shared.

– Write miss: requesting processor is sent the value & becomes the Sharing
node. The block is made Exclusive to indicate that the only valid copy is
cached. Sharers indicates the identity of the owner.

• Block is Shared => the memory value is up-to-date:
– Read miss: requesting processor is sent back the data from memory &

requesting processor is added to the sharing set.
– Write miss: requesting processor is sent the value. All processors in the

set Sharers are sent invalidate messages, & Sharers is set to identity of
requesting processor. The state of the block is made Exclusive.

3/3/2006 CS252 s06 snooping cache MP 58

Example Directory Protocol

• Block is Exclusive: current value of the block is held in
the cache of the processor identified by the set Sharers
(the owner) => three possible directory requests:

– Read miss: owner processor sent data fetch message, causing state of
block in owner’s cache to transition to Shared and causes owner to send
data to directory, where it is written to memory & sent back to
requesting processor.
Identity of requesting processor is added to set Sharers, which still
contains the identity of the processor that was the owner (since it still
has a readable copy). State is shared.

– Data write-back: owner processor is replacing the block and hence must
write it back, making memory copy up-to-date
(the home directory essentially becomes the owner), the block is now
Uncached, and the Sharer set is empty.

– Write miss: block has a new owner. A message is sent to old owner
causing the cache to send the value of the block to the directory from
which it is sent to the requesting processor, which becomes the new
owner. Sharers is set to identity of new owner, and state of block is
made Exclusive.

3/3/2006 CS252 s06 snooping cache MP 59

Example

P1 P2 Bus Directory Memory
step State Addr Value State Addr Value Action Proc. Addr Value Addr State {Procs} Value

P1: Write 10 to A1

P1: Read A1
P2: Read A1

P2: Write 40 to A2

P2: Write 20 to A1

A1 and A2 map to the same cache block

Processor 1 Processor 2 Interconnect MemoryDirectory

3/3/2006 CS252 s06 snooping cache MP 60

Example

P1 P2 Bus Directory Memory
step State Addr Value State Addr Value Action Proc. Addr Value Addr State {Procs} Value

P1: Write 10 to A1 WrMs P1 A1 A1 Ex {P1}
Excl. A1 10 DaRp P1 A1 0

P1: Read A1
P2: Read A1

P2: Write 40 to A2

P2: Write 20 to A1

A1 and A2 map to the same cache block

Processor 1 Processor 2 Interconnect MemoryDirectory

3/3/2006 CS252 s06 snooping cache MP 61

Example

P1 P2 Bus Directory Memory
step State Addr Value State Addr Value Action Proc. Addr Value Addr State {Procs} Value

P1: Write 10 to A1 WrMs P1 A1 A1 Ex {P1}
Excl. A1 10 DaRp P1 A1 0

P1: Read A1 Excl. A1 10
P2: Read A1

P2: Write 40 to A2

P2: Write 20 to A1

A1 and A2 map to the same cache block

Processor 1 Processor 2 Interconnect MemoryDirectory

3/3/2006 CS252 s06 snooping cache MP 62

Example

P2: Write 20 to A1

A1 and A2 map to the same cache block

P1 P2 Bus Directory Memory
step State Addr Value State Addr Value Action Proc. Addr Value Addr State {Procs} Value

P1: Write 10 to A1 WrMs P1 A1 A1 Ex {P1}
Excl. A1 10 DaRp P1 A1 0

P1: Read A1 Excl. A1 10
P2: Read A1 Shar. A1 RdMs P2 A1

Shar. A1 10 Ftch P1 A1 10 10
Shar. A1 10 DaRp P2 A1 10 A1 Shar. {P1,P2} 10

10
10

P2: Write 40 to A2 10

Processor 1 Processor 2 Interconnect MemoryDirectory

A1

Write BackWrite Back

A1

3/3/2006 CS252 s06 snooping cache MP 63

Example

P2: Write 20 to A1

A1 and A2 map to the same cache block

P1 P2 Bus Directory Memory
step State Addr Value State Addr Value Action Proc. Addr Value Addr State {Procs} Value

P1: Write 10 to A1 WrMs P1 A1 A1 Ex {P1}
Excl. A1 10 DaRp P1 A1 0

P1: Read A1 Excl. A1 10
P2: Read A1 Shar. A1 RdMs P2 A1

Shar. A1 10 Ftch P1 A1 10 10
Shar. A1 10 DaRp P2 A1 10 A1 Shar. {P1,P2} 10
Excl. A1 20 WrMs P2 A1 10

Inv. Inval. P1 A1 A1 Excl. {P2} 10
P2: Write 40 to A2 10

Processor 1 Processor 2 Interconnect MemoryDirectory

A1A1

3/3/2006 CS252 s06 snooping cache MP 64

Example

P2: Write 20 to A1

A1 and A2 map to the same cache block

P1 P2 Bus Directory Memory
step State Addr Value State Addr Value Action Proc. Addr Value Addr State {Procs} Value

P1: Write 10 to A1 WrMs P1 A1 A1 Ex {P1}
Excl. A1 10 DaRp P1 A1 0

P1: Read A1 Excl. A1 10
P2: Read A1 Shar. A1 RdMs P2 A1

Shar. A1 10 Ftch P1 A1 10 10
Shar. A1 10 DaRp P2 A1 10 A1 Shar. {P1,P2} 10
Excl. A1 20 WrMs P2 A1 10

Inv. Inval. P1 A1 A1 Excl. {P2} 10
P2: Write 40 to A2 WrMs P2 A2 A2 Excl. {P2} 0

WrBk P2 A1 20 A1 Unca. {} 20
Excl. A2 40 DaRp P2 A2 0 A2 Excl. {P2} 0

Processor 1 Processor 2 Interconnect MemoryDirectory

A1A1

3/3/2006 CS252 s06 snooping cache MP 65

Implementing a Directory

• We assume operations atomic, but they are not;
reality is much harder; must avoid deadlock
when run out of bufffers in network (see
Appendix E)

• Optimizations:
– read miss or write miss in Exclusive: send data directly to

requestor from owner vs. 1st to memory and then from
memory to requestor

3/3/2006 CS252 s06 snooping cache MP 66

Basic Directory Transactions

P

A M/D

C

P

A M/D

C

P

A M/D

C

Read request
to directory

Reply with
owner identity

Read req.
to owner

Data
Reply

Revision message
to directory

1.

2.

3.

4a.

4b.

P

A M/D

C
P

A M/D

C

P

A M/D

C

RdEx request
to directory

Reply with
sharers identity

Inval. req.
to sharer

1.

2.

P

A M/D

C

Inval. req.
to sharer

Inval. ack

Inval. ack

3a. 3b.

4a. 4b.

Requestor

Node with
dirty copy

Directory node
for block

Requestor

Directory node

Sharer Sharer

(a) Read miss to a block in dirty state (b) Write miss to a block with two sharers

3/3/2006 CS252 s06 snooping cache MP 67

Example Directory Protocol (1st Read)

E

S

I

P1$

E

S

I

P2$

D

S

U

MDir
ctrl

ld vA -> rd pA

Read pA

R/reply

R/req

P1: pA

S

S

3/3/2006 CS252 s06 snooping cache MP 68

Example Directory Protocol (Read Share)

E

S

I

P1$

E

S

I

P2$

D

S

U

MDir
ctrl

ld vA -> rd pA

R/reply

R/req

P1: pA

ld vA -> rd pA

P2: pA

R/req
R/_

R/_

R/_S

S

S

3/3/2006 CS252 s06 snooping cache MP 69

Example Directory Protocol (Wr to shared)

E

S

I

P1$

E

S

I

P2$

D

S

U

MDir
ctrl

st vA -> wr pA

R/reply

R/req

P1: pA

P2: pA

R/req

W/req E

R/_

R/_

R/_

Invalidate pARead_to_update pA

Inv ACK

RX/invalidate&reply

S

S

S

D

E

reply xD(pA)

W/req E
W/_

Inv/_ Inv/_

EX

3/3/2006 CS252 s06 snooping cache MP 70

Example Directory Protocol (Wr to Ex)

E

S

I

P1$

E

S

I

P2$

D

S

U

MDir
ctrlR/reply

R/req

P1: pA

st vA -> wr pA

R/req

W/req E

R/_

R/_

R/_

Reply xD(pA)Write_back pA

Read_toUpdate pA

RX/invalidate&reply

D

E

Inv pA

W/req E
W/_

Inv/_ Inv/_

W/req EW/_

I

E

W/req E

RU/_

3/3/2006 CS252 s06 snooping cache MP 71

A Popular Middle Ground

• Two-level “hierarchy”
• Individual nodes are multiprocessors, connected non-

hiearchically
– e.g. mesh of SMPs

• Coherence across nodes is directory-based
– directory keeps track of nodes, not individual processors

• Coherence within nodes is snooping or directory
– orthogonal, but needs a good interface of functionality

• SMP on a chip directory + snoop?

3/3/2006 CS252 s06 snooping cache MP 72

And in Conclusion …
• Caches contain all information on state of

cached memory blocks
• Snooping cache over shared medium for smaller

MP by invalidating other cached copies on write
• Sharing cached data ⇒ Coherence (values

returned by a read), Consistency (when a written
value will be returned by a read)

• Snooping and Directory Protocols similar; bus
makes snooping easier because of broadcast
(snooping => uniform memory access)

• Directory has extra data structure to keep track
of state of all cache blocks

• Distributing directory => scalable shared
address multiprocessor
=> Cache coherent, Non uniform memory access

